-
Turusov Robert Alekseevich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Physical and Mathematical Sciences, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Hamed Memaryanfard -
Moscow State University of Civil Engineering (MGSU)
postgraduate student, Department of Strength of Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
Today works in cosmos and at great sea depths are becoming very current. In order to execute these works tanks with great mass perfection are needed, which represents the relation of the product of pressure and inner volume to its mass. Usually such tanks are usually produced as a cocoon by winding methods, which can be automated. The simplest model of a cocoon is a cylinder with hemispheric blinds at the edges. The radial stresses arise in thick walled composite cylinders due to anisotropic thermal shrinkage during cooling process after curing. It also can lead to formation of radial cracks. The results of the analyses when a material is simplified to a homogenous orthotropic material show a very small residual radial stress value. In this paper we have used discrete model to evaluate residual radial stresses in thick-walled unidirectional filament wound cylinder and the results were compared to the results of homogenous orthotropic model.
DOI: 10.22227/1997-0935.2015.1.27-35
References
- Ekel’chik V.S., Klyunin O.S. Novyy podkhod k sozdaniyu oblegchennykh metallo-plastikovykh ballonov vysokogo davleniya dlya szhatykh gazov [New Approach to Creating Lightweight Plastic High Pressure Cylinders for Compressed Gases]. Voprosy materialovedeniya [Problems of Materials Science]. 2003, no. 2 (34), pp. 26—32. (In Russian)
- Turusov R.A., Kuperman A.M. Eksperimental’nye issledovaniya vliyaniya masshtabnogo faktora na uprugo-prochnostnye kharakteristiki odnonapravlennykh kolets iz stekloplastika [Experimental Studies of the Scale Factor Influence on the Elastic-Strength Properties of Unidirectional Fiberglass Rings]. Mekhanika kompozitsionnykh materialov i konstruktsiy [Journal on Composite Mechanics and Design]. 1998, vol. 4, no. 3, pp. 62—69. (In Russian)
- Turusov R.A., Korotkov V.N., Rogozinskiy A.K., Kuperman A.M., Sulyaeva Z.P. Tekhnologicheskaya monolitnost’ obolochek iz polimernykh kompozitnykh materialov [Monolithic Technology of the Shells of Polymer Composite Materials]. Mekhanika kompozitnykh materialov [Mechanics of Composite Materials]. 1987, no. 6, pp. 1072—1076. (In Russian)
- Plepys A.R., Farris R.J. Evolution of Residual Stresses in Three-Dimensionally Constrained Epoxy Resins. Polymer. 1990, vol. 31, no. 10, pp. 1932—1936. DOI: http://dx.doi.org/10.1016/0032-3861(90)90019-U.
- Turusov R.A., Korotkov V.N., Metlov V.V., Rozenberg B.A. Ostatochnye napryazheniya v gomogennykh i armirovannykh polimerakh [Residual Stresses in Homogeneous and Reinforced Polymers]. Ostatochnye tekhnologicheskie napryazheniya : trudy II Vsesoyuznogo simpoziuma [Technological Residual Stresses : Works of the 2nd All-Union Symposium]. Moscow, 1985, pp. 320—325. (In Russian)
- Korotkov V.N., Andreevska G.D., Rosenberg B.A. Temperature Stresses in Polymers and Composites. Mechanics of Composites. NY, March 1981, pp. 290—295.
- Schapery R.A. Thermal Expansion Coefficients of Composite Materials Based on Energy Principles. J. Composite Mater. 1968, vol. 2, no. 3, pp. 380—404. DOI: http://dx.doi.org/10.1177/002199836800200308.
- Greszak L.B. Thermoelastic Properties of Filamentary Composites. Presented at AIAA 6th Structures and Materials Conference. April 1965.
- Cairns D.S., Adams D.F. Moisture and Thermal Expansion Properties of Unidirectional Composite Materials and the Epoxy Matrix. Journal of Reinforced Plastics and Composites. 1983, vol. 2, no. 4, pp. 239—255. DOI: http://dx.doi.org/10.1177/073168448300200403.
- Mallick P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design. 3rd ed. Taylor & Francis Group, LLC, 2007, 617 p.
- Southwell R.V. Introduction to the Theory of Elasticity for Engineers and Physicists. Dover Publications Inc., 1970, 509 p.
- Halpin J.C., Tsai S.W. Effect of Environment Factors on Composite Materials. Air Force tech. rep. AFML-TR-67-423. June 1969, 62 p.
- Hashin Z. Theory of Fiber Reinforced Materials. NASA tech. rep. contract no: NAS1-8818. November 1970.
- Jones R.M. Mechanics of Composite Materials. Crc Press, 1998, 538 p.
- Turusov R.A., Korotkov V.N., Rogozinskiy A.K. Temperaturnye napryazheniya v tsilindre iz kompozitnogo materiala v protsesse ego okhlazhdeniya i khraneniya [Thermal Stresses in a Cylinder Made of a Composite Material in the Process of Cooling and Storage]. Mekhanika kompozitnykh materialov [Mechanics of Composite Materials]. 1983, no. 2, pp. 290—295. (In Russian)
- Wilson J.F., Orgill G. Linear Analysis of Uniformly Stressed Orthotropic Cylindrical Shell. J. Appl. Mech. 1986, vol. 53, no. 2, pp. 249—256. DOI: http://dx.doi.org/10.1115/1.3171748.
- Yuan F.G. Analysis of Thick-Section Composite Cylindrical Shells under Hydrostatic Pressure. American Society for Testing and Materials. 1993, vol. 11, pp. 607—632.
- Timoshenko S. Theory of Elasticity. Mcgraw-Hill College; 1 edition, 1934, 416 p. (In Russian)
- Sadd M.H. Elasticity: Theory, Applications, and Numerics. Elsevier, 2004, 474 p.
- Issledovaniya po mekhanike kompozitsionnykh materialov i konstruktsiy [Researches on the Mechanics of Composite Materials and Structures]. Scientific Technical Society named after A.N. Krylov. Leningrad, Sudostroenie Publ., 1981, 94 p. (Materials on experience exchange; issue 344). (In Russian)
-
Memarianfard Mahsa -
K.N. Toosi University of Technology
Associate Professor, Department of Engineering Ecology, K.N. Toosi University of Technology, 470 Mirdamad Ave. West, 19697, Tehran, Iran;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Turusov Robert Alekseevich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Physical and Mathematical Sciences, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Memarianfard Memaryanfard -
Moscow State University of Civil Engineering (National Research University) (MGSU)
postgraduate student, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
This paper presents t experimental and numerical studies of cracking in the thick-walled filament-wound cylindrical shells made of fiber reinforced plastic during the manufacturing process (specifically, in the process of curing and cooling). The experiments have shown that, when the cylinder is cooled by optimum cooling regime, at the end of the cooling process the obtained cylinder is monolithic and without ring cracking. In this regard, the residual thermal stresses in thick-walled cylinder in the cooling process is calculated using finite element method with account for transient heat conduction and the temperature dependence of the mechanical properties of the material and the viscoelastic behavior of the polymer. The calculations are conducted for cooling in standard and optimum regimes. The results showed that the maximum radial stress in the most dangerous initial area is several times less when the cylinder is cooled down in the optimum regime than when it is cooled in the standard regime.
DOI: 10.22227/1997-0935.2016.7.36-45
References
- Ekel’chik V.S., Klyunin O.S. Novyy podkhod k sozdaniyu oblegchennykh metallo-plastikovykh ballonov vysokogo davleniya dlya szhatykh gazov [New Approach to the Creation of Lightweight Reinforced-Plastic High Pressure Cylinders for Compressed Gases]. Voprosy materialovedeniya [Problems of Materials Science]. 2003, no. 2 (34), pp. 26—31. (In Russian)
- Turusov R.A., Memaryanfard H. Diskretnaya model’ v analize ostatochnykh napryazheniy odnonapravlennykh namotochnykh tsilindrov iz armirovannogo plastika v protsesse okhlazhdeniya [Discrete Model in the Analysis of Residual Stresses in Unidirectional Winding Cylinders Made of Fiber-Reinforced Plastic]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 1, pp. 27—35. (In Russian)
- Turusov R.A., Korotkov V.N., Rogozinskiy A.K., Kuperman A.M., Sulyaeva Z.P. Tekhnologicheskaya monolitnost’ obolochek iz polimernykh kompozitnykh materialov [Monolithic Technology of the Shells of Polymer Composite Materials]. Mekhanika kompozitnykh materialov [Mechanics of Composite Materials]. 1987, no. 6, pp. 1072—1076. (In Russian)
- Turusov R.A., Korotkov V.N., Rogozinskiy A.K. Temperaturnye napryazheniya v tsilindre iz kompozitnogo materiala v protsesse ego okhlazhdeniya i khraneniya [Thermal Stresses in a Cylinder Made of a Composite Material in the Process of Cooling and Storage]. Mekhanika kompozitnykh materialov [Mechanics of Composite Materials]. 1983, no. 2, pp. 290—295. (In Russian)
- Korotkov V.N., Dubovitskiy A.Ya., Turusov R.A., Rozenberg B.A. Teoriya optimizatsii rezhima okhlazhdeniya tolstostennykh izdeliy iz kompozitnykh materialov [Optimization Theory of Cooling Regime of Thick-Walled Products Made of Composite Materials]. Mekhanika kompozitnykh materialov [Mechanics of Composite Materials]. 1982, no. 6, pp. 1051—1055. (In Russian)
- Bolotin V.V., Blagonadezhin V.L., Varushkin E.M., Perevozchikov V.G. Ostatochnye napryazheniya v namotochnykh elementakh konstruktsiy iz armirovannykh plastikov [Residual Stresses in Winding Elements of Constructions Made of Reinforced Plastics]. Moscow, Izdatel’stvo TsNII informatsii Publ., 1977. (In Russian)
- Bolotin V.V., Vorontsov A.N. Formation of Residual Stresses in Components Made out of Laminated and Fibrous Composites during the Hardening Process. Mechanics of Composites. September 1976, vol. 12, no. 5, pp. 701—705. DOI: http://dx.doi.org/10.1007/BF00856324.
- Afanas’ev Yu.A., Ekel’chik B.C., Kostritskiy S.N. Temperaturnye napryazheniya v tolstostennykh ortotropnykh tsilindrakh iz armirovannykh polimernykh materialov pri neodnorodnom okhlazhdenii [Temperature Stresses in Thick-Walled Orthotropic Cylinders Made of Reinforced Polymer Materials in Case of Inhomogeneous Cooling]. Mekhanika kompozitnykh materialov [Mechanics of Composite Materials]. 1980, no. 4, pp. 651—660. (In Russian)
- Hyer M.W., Rousseau C.Q. Thermally-Induced Stresses and Deformations in Angle-Ply Composite Tubes. Journal of Composite Materials. 1987, vol. 21, no. 5, pp. 454—480. DOI: http://dx.doi.org/10.1177/002199838702100504.
- Jerome T. Tzeng. Prediction and Experimental Verification of Residual Stresses in Thermoplastic Composites. Journal of Thermoplastic Composite Materials. April 1995, vol. 8, no. 2, pp. 163—179. DOI: http://dx.doi.org/10.1177/089270579500800202.
- Tzeng T., Chien L.S. A Thermal Viscoelastic Analysis for Thick-Walled Composite Cylinders. Journal of Composite Materials March. 1995, vol. 29, no. 4, pp. 525—548.
- Wisnom M.R., Stringer L.G., Hayman R.J., Hinton M.J. Curing Stresses in Thick Polymer Composite Components. Part I: Analysis. 12th International Conference on Composite Materials, Paris, July 1999. Woodhead Publishing Ltd, 1999, p. 859. Available at: http://iccm-central.org/Proceedings/ICCM12proceedings/site/papers/pap859.pdf.
- Li C., Wisnom M.R., Stringer L.G., Hayman R., Hinton M.J. Effect of Mandrel Contact on Residual Stresses During Cure of Filament Wound Tubes. 8th International Conference on Fibre Reinforced Composites, 13—15 September 2000, Newcastle-upon-Tyne, UK. 2000, pp. 105—112.
- Gorbatkina Yu.A. Adhesive Strength of Fibre-Polymer Systems. New York, London, Ellis Horwood, 1992, 264 p.
- Turusov R.A. Adgezionnaya mekhanika [Adhesion Mechanics]. Moscow, MGSU Publ., 2015, 230 p. (In Russian)
- Babich V.F. Issledovanie vliyaniya temperatury na mekhanicheskie kharakteristiki zhestkikh setchatykh polimerov : avtoreferat dissertatsii … kandidata tekhnicheskikh nauk [Study of Temperature Influence on the Mechanical Properties of Rigid Cross-Linked Polymers : Abstract of the Dissertation of Candidate of Technical Sciences]. Moscow, 1966, 12 p. (In Russian)
- Gurevich G.I. Deformiruemost’ sred i rasprostranenie seysmicheskikh voln [Deformability of Media and Propagation of Seismic Waves]. Moscow, Nauka Publ., 1974, 482 p. (In Russian)
- Nemat-Nasser S., Hori M. Micromechanics: Overall Properties of Heterogeneous Materials. Amsterdam, Elsevier Science Publishers, 1993.
- Aboudi J. Mechanics of Composite Materials, a Unified Micromechanical Approach. Amsterdam, Elsevier Science Publishers, 1991.
- Zihui Xia, Yunfa Zhang, Fernand Ellyin. A Unified Periodical Boundary Conditions for Representative Volume Elements of Composites and Applications. International Journal of Solids and Structure. April 2003, vol. 40, issue 8, pp. 1907—1921. DOI: http://dx.doi.org/10.1016/S0020-7683(03)00024-6.
- Zheng-Ming Huang, Li-min Xin. Stress Concentration Factors of Matrix in a Compo-Site. Subjected to Transverse Loads. ICCM 2014, July 28—30. Cambridge, 3 p. Available at: http://www.sci-en-tech.com/ICCM2014/PDFs/321-979-1-PB.pdf.