Analysis of a continuous double-s pan beam that has disabled constraints
Pages 148 - 154
The objective of this article is to present the analysis of a double-span beam that has disabled
constraints, including its analysis in the state of static equilibrium and in the event of forced
vibrations. Hereinafter, the original system is entitled System 1, while the system that has disabled
constraints is System 2.
The analysis is performed in furtherance of the following pattern. First, System 1 static analysis
and System 2 static and dynamic properties analysis is executed. Later, we calculate the deflection
and the internal force of System 2 as the consequence of disabled constraints. By comparing
the process of static equilibrium of System 2 and the process of free vibrations of System 2, we
identify that the moment of flexion in the mid-span increases by 85 %, while the support moment
increases by 66 %.
The analysis of the system that has disabled constraints in the process of forced vibrations is
the same as the analysis demonstrated hereinbefore, except that the initial condition is calculated
differently. By disabling constraints, we can both reduce and increase the peak values of displacement
of the system in the process of forced vibrations.
This research proves that the proposed method can be used to calculate defl ection and the
internal force of static and dynamic systems having disabled constraints. That can be very important
in evaluation of the safety of structures after destruction of their individual elements.
DOI: 10.22227/1997-0935.2012.9.148 - 154
- Chernov Yu.T. K raschetu sistem s vyklyuchayushchimisya svyazyami [About the Analysis of Systems That Have Disrupting Constraints]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Analysis of Structures]. 2010, no. 4, pp. 53—57. Available at: http://elibrary.ru. Date of access: June 18, 2012.
- Chernov Yu.T., Petrov I.A. Opredelenie ekvivalentnykh staticheskikh sil pri raschete sistem s vyklyuchayushchimisya svyazyami [Identification of Equivalent Static Forces as part of Analysis of Systems That Have Disrupting Constraints]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 4, pp. 98—101. Available at: http://vestnikmgsu.ru. Date of access: June 18, 2012.
- Karpilovskiy V.S., Kriksunov E.Z., Malyarenko A.A. Vychislitel’nyy kompleks SCAD [SCAD Computer System]. Moscow, ASV Publ., 2008, 592 p.
- Timoshenko S.P., Yang D.Kh., Univer U. Kolebaniya v inzhenernom dele [Vibrations in Engineering]. Moscow, Mashinostroenie Publ., 1985, 472 p.
- Darkov A.V., Shaposhnikov N.N. Stroitel’naya mekhanika [Structural Mechanics]. Moscow, Vyssh. shk. publ., 1986, 607 p.
- Chernov Yu.T. Vibratsii stroitel’nykh konstruktsiy [Vibrations of Engineering Structures]. Moscow, ASV Publ., 2011, 382 p.
- Salvatore Mangano. Mathematica Cookbook. O’Reilly Media, 2010, 830 p.
- Perel’muter A.V., Kriksunov E.Z., Mosina N.V. Realizatsiya rascheta monolitnykh zhilykh zdaniy na progressiruyushchee (lavinoobraznoe) obrushenie v srede vychislitel’nogo kompleksa «SCAD Office» [Analysis of a Building Consisting of Cast-in-situ Reinforced Concrete to Resist Progressive Collapse Using «SCAD Offi ce» Computer System]. Inzhenerno-stroitel’nyy zhurnal [Journal of Civil Engineering]. 2009, no. 2, pp. 13—18. Available at: http://engstroy.spb.ru. Date of access: June 18, 2012.