DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Secularitycondition of the kinetic Carleman system

Vestnik MGSU 7/2015

Pages 33-40

The kinetic theory of gases is considered as a collection of a large number of interacting particles. We consider the discrete kinetic model of one-dimensional gas consisting of identical monatomic molecules, which can have one of two speeds, namely, the Cauchy problem with periodic initial conditions for the system of the Carleman equation. This mathematical model has a number of properties of the Boltzmann equation. This system of equations is a quasi-linear hyperbolic system of partial differential equations. In general, there is no analytic solution for this system. Therefore, under some general assumptions we can find the finite-dimensional approximation of the solutions for the Carleman equation with small Knudsen numbers that allow us to study our problem on the widest scale. Moreover, we can find the secularity condition of the Carleman model. An approximation solution of the Carleman equation for non-periodic initial data will be found in the next article. There is an interesting problem of the existence of the shock waves connecting the pairs of equilibrium states. Here we have a catastrophe theory. It is assumed that the solutions of the Cauchy problem split into the superposition of weakly interacting solitons and decreasing dispersive waves. The Cauchy problem of the Carleman equation is studied for small perturbations of the equilibrium state whereby we have perturbed system. In order to construct the finite-dimensional approximation we use the Fourier method. Construction of finite-dimensional approximation allows doing theoretical studies of solutions for the Cauchy problem of the Carleman equation with small Knudsen numbers.

DOI: 10.22227/1997-0935.2015.7.33-40

References
1. Boltzmann L. Izbrannye trudy [Selected works]. Moscow, Nauka Publ., 1984, 590 p. (Classics of Science) (In Russian)
2. Godunov S.K., Sultangazin U.M. O diskretnykh modelyakh kineticheskogo uravneniya Bol’tsmana [On Discrete Models of the Kinetic Boltzmann Equation]. Uspekhi Matematicheskikh Nauk [The Success of Mathematical Sciences]. 1971, vol. 26, no. 3 (159), pp. 3—51. (In Russian)
3. Karleman T. Matematicheskie zadachi kineticheskoy teorii gazov [Mathematical problems of the Kinetic Gas Theory]. Translated from French. Moscow,IIL Publ., 1960, 118 p. (In Russian)
4. Radkevich E.V. O diskretnykh kineticheskikh uravneniyakh [On Discrete Kinetic Equations]. Doklady Akademii nauk [Reports of the Academy of Sciences]. 2012, vol. 447, no. 4, pp. 369—373. (In Russian)
5. Radkevich E.V. The Existence of Global Solutions to the Cauchy Problem for Discrete Kinetic Equations. Journal of Mathematical Science. 2012, vol. 181, no. 2, pp. 232—280. DOI: http://dx.doi.org/10.1007/s10958-012-0683-9.
6. Radkevich E.V. O povedenii na bol’shikh vremenakh resheniy zadachi Koshi dlya dvumernogo kineticheskogo uravneniya [The Behavior of Solutions of the Cauchy Problem at Large Times for Two-Dimensional Kinetic Equation]. Sovremennaya matematika. Fundamental’nye napravleniya [Contemporary Mathematics. Fundamental Directions]. 2013, vol. 47, pp.108—139. (In Russian)
7. Vasil’eva O.A., Dukhnovskiy S.A., Radkevich E.V. O lokal’nom ravnovesii uravneniya Karlemana [On Local Equilibrium of the Carleman Equation]. Problemy matematicheskogo analiza [Problems of Mathematical Analysis]. 2015, vol. 78, pp. 165—190. (In Russian)
8. Radkevich E.V., Vasileva O.A., Dukhnovskii S.A. Local Equilibrium of the Carleman Equation. Journal of Mathematical Science. 2015, vol. 207, no. 32, pp. 296—323.
9. Vasil’eva O.A. Chislennoe issledovanie sistemy uravneniy Karlemana [Numerical Investigation of the Carleman System]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 6, pp. 7—15. (In Russian)
10. Broadwell T.E. Study of Rarified Shear Flow by the Discrete Velocity Method. J. of Fluid Mechanics. 1964, vol. 19, no. 3, pp. 401—414. DOI: http://dx.doi.org/10.1017/S0022112064000817.
11. Il’in O.V. Statsionarnye resheniya kineticheskoy modeli Broduella [Stationary Solutions of the Kinetic Broadwell Model]. Teoreticheskaya i matematicheskaya fizika [Theoretical and Mathematical Physics]. 2012, vol. 170, no. 3, pp. 481—488. (In Russian)
12. Adzhiev S.Z., Amosov S.A., Vedenyapin V.V. Odnomernye diskretnye modeli kineticheskikh uravneniy dlya smesey [One Dimensional Discrete Models of Kinetic Equations for Mixtures]. Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki [Journal of Computational Mathematics and Mathematical Physics]. 2004, vol. 44, no. 3, pp. 553—558. (In Russian)
13. Il’in O.V. Izuchenie sushchestvovaniya resheniy i ustoychivosti kineticheskoy sistemy Karlemana [Investigating the Existence of Solutions and Stability of Carleman Kinetic System]. Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki [Journal of Computational Mathematics and Mathematical Physics]. 2007, vol. 47, no. 12, pp. 2076—2087. (In Russian)
14. Aristov V., Ilyin O. Kinetic Model of the Spatio-Temporal Turbulence. Phys. Let. A. 2010, vol. 374, no. 43, pp. 4381—4384. DOI: http://dx.doi.org/10.1016/j.physleta.2010.08.069.
15. Illner R., Reed M.C., Neunzert H. The Decay of Solutions of the Carleman Model. Math. Methods Appl. Sci. 1981, vol. 3 (1), pp. 121—127. DOI: http://dx.doi.org/10.1002/ mma.1670030110.
16. Aristov V.V. Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows. Kluwer Academic Publishing, 2001, 312 p.
17. Radkevich E.V. Matematicheskie voprosy neravnovesnykh protsessov [Mathematical Problems of Nonequilibrium Processes]. Novosibirsk, T. Rozhkovskaya Publ., 2007, 300 p. (In Russian)
18. Radkevich E.V. The Existence of Global Solutions to the Cauchy Problem for Discrete Kinetic Equations (Non-Periodic Case). Journal of Mathematical Science. 2012, vol. 184, no. 4, pp. 524—556. DOI: http://dx.doi.org/10.1007/s10958-012-0879-z.
19. Frishter L.Yu. Analiz napryazhenno-deformirovannogo sostoyaniya v vershine pryamougol’nogo klina [Analysis of Stress-strain State on Top of a Rectangular Wedge]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 5, pp. 57—62. (In Russian)
20. Euler N., Steeb W.-H. Painleve Test and Discrete Boltzmann Equations. Aust. J. Phys. 1989, vol. 42 (1), pp. 1—10. DOI: http://dx.doi.org/10.1071/PH890001.