Error
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering

Efficient methods of piping cleaning

Vestnik MGSU 1/2014
  • Orlov Vladimir Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Head of the Department of Water Supply and Waste Water Treatment, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Nechitaeva Valentina Anatol'evna - Moscow State University of Civil Engineering (MGSU) Associate Professor, Department of Water Sup- ply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bogomolova Irina Olegovna - Moscow State University of Civil Engineering (MGSU) Assistant, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Shaykhetdinova Yuliya Aleksandrovna - Moscow State University of Civil Engineering (MGSU) student, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Daminova Yuliya Farikhovna - Moscow State University of Civil Engineering (MGSU) student, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 133-138

The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments ad- sorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple, quick, effective, economical and environmentally safe compared to other methods, allowing to remove the growths of biofilms and other pollution and maintain the hydraulic performance of pipeline operation at the expense of drawing on the internal surface of pipes of ice crust.

DOI: 10.22227/1997-0935.2014.1.133-138

References
  1. Khramenkov S.V. Strategiya modernizatsii vodoprovodnoy seti [The Modernization Strategy of Water Supply Systems]. Moscow, Stroyizdat Publ., 2005, 398 p.
  2. Kuliczkowski A., Kuliczkowska E., Zwierzchowska A. Technologie beswykopowe w inzeynierii srodowiska. Wydawnictwo Seidel-Przywecki Sp. Kielce, 2010, 735 p.
  3. Pinguet J.-F., Meynardie G. Reseaux d'assainissement: du diagnostic a la rehabilitation. Eau, Industry, Nuisances. 2006, no. 295, pp. 39—43.
  4. Zwierzchowska A. Technologie bezwykopowej budowy sieci gazowych, wodociagowych i kanalizacyjnych. Politechnika swietokrzyska. Kielce, 2006, 180 p.
  5. Rameil M. Handbook of Pipe Bursting Practice. Vulkan verlag. Essen, 2007, 351 p.
  6. Orlov V.A., Meshkova N.I. Ul'trazvukovaya sistema Piglet. Vnutrenniy osmotr i prochistka truboprovodov [Ultrasound System Piglet. Internal Inspection and Cleaning of Pipelines]. Tekhnologii Mira [Technologies of the World]. 2012, no. 5, pp. 43—44.
  7. Stephenson M. Ice Pigging — a NO-DIG Technique for Cleaning Pressurized Pipes. NO-DIG 2013, Sydney (Australia). Available at: www.nodigdownunder.com. Date of access: 19.11.2013.
  8. Khramenkov S.V., Orlov V.A., Khar'kin V.A. Optimizatsiya vosstanovleniya vodootvodyashchikh setey [Restoration Optimization of Gravity Systems]. Moscow, Stroyizdat Publ., 2002, pp. 160.
  9. Santiago A., Durango M. Most Advanced Technology for Pipeline Inspection in the World: See, Measure and Navigate in 3D through Pipes and Manholes. NO-DIG 2012, Sao Paulo (Brasil). Available at: www.nodigsaupaulo2012.com. Date of access: 22.02.2013.
  10. Orlov V.A., Orlov E.V., Zverev P.V. Tekhnologii mestnogo bestransheynogo remonta vodootvodyashchikh truboprovodov [Technologies for Sectional Trenchless Repair of Water Discharge Pipelines]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 7, pp. 86—95.

Download

Trenchless renovation of worn-out pipelines through their prior destruction and dragging new polymer pipes in place of the old

Vestnik MGSU 7/2014
  • Orlov Vladimir Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Head of the Department of Water Supply and Waste Water Treatment, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bogomolova Irina Olegovna - Moscow State University of Civil Engineering (MGSU) Assistant, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Gureeva Irina Sergeevna - Moscow State University of Civil Engineering (MGSU) student, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-36-29; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 101-109

The authors present an analysis of effective methods of trenchless renovation of worn-out pipelines for water supply and wastewater disposal systems by means of prior destruction and dragging the new polymer pipes in the free space. The analysis of the devices for the destruction of the pipeline by trenchless methods, which include the pneumatic hammers, the wideners, petal cutters of various designs, is given. The article describes the conditions for application of different types of devices for destruction of pipelines, in particular, the range of destructible diameters and ROP. A fundamental condition for the effective work on the destruction of old pipes and dragging polymer and other pipes is the correct selection of conical reamers (their length and material, the angle of approach, the presence and number of cutting blades of a certain form, blades, etc.). Depending on the type of pipe (the strength of the wall) can be used to smooth the lead-in part of extenders or equipped with cutting lengthwise or roller blades. Tips-chopping knives, regardless of their design differences act like a can opener, slitting line into two or more parts and then pressing them into the surrounding soil and ensuring the free passage of the new extender conical pipes. The average speed of movement with destructive tip is about 80 m/h. A speed reduction is observed only when passing through the tip of the screw connections of the pipes. The work on restoration of old pipe sections shall be conducted in accordance with technological regulations, including preparations, which include inspection, skipping rope, winch procleaning, etc.), the main (construction) and final (dismantling) work that are associated with all stages of the process of the destructing the old and dragging a new pipeline. Particular attention is paid to foreign experience of trenchless renovation for steel pipes with couplings roller blades. The authors present the characteristics of renovation, approaches to the destruction of the old pipeline, in particular, the tests to assess the effectiveness of cutting pipe cutting devices. The technical process indicators are offered.

DOI: 10.22227/1997-0935.2014.7.101-109

References
  1. Khramenkov S.V. Strategiya modernizatsii vodoprovodnoy seti [Strategy of Modernization of Water Supply Networks]. Moscow, Stroyizdat Publ., 2005, 398 p.
  2. Khramenkov S.V., Primin O.G., Otstavnov A.A. Ispol'zovanie polietilenovykh trub dlya sistem vodosnabzheniya i vodootvedeniya [Use of Polyethylene Pipes for Water Supply and Sanitation]. Moscow, Sovremennaya poligrafiya Publ., 2010, 318 p.
  3. Rybakov A.P. Osnovy bestransheynykh tekhnologiy [Basics of Trenchless Technologies]. Moscow, PressByuro Publ., 2005, 304 p.
  4. Khramenkov S.V., Orlov V.A., Khar'kin V.A. Optimizatsiya vosstanovleniya vodootvodyashchikh setey [Optimization of Gravity Networks Restoration]. Moscow, Stroyizdat Publ., 2002, 160 p.
  5. Kuliczkowski A., Kuliczkowska E., Zwierzchowska A. Technologie beswykopowe w inzeynierii srodowiska. Wydawnictwo Seidel-Przywecki Sp., 2010, 735 p.
  6. Otstavnov A.A., Orlov E.V., Khantaev I.S. Pervoocherednost' vosstanovleniya truboprovodov vodosnabzheniya i vodootvedeniya [Priority Order of pipeline rehabilitation of water supply and sewerage]. Stroitel'nyy inzhiniring [Journal of Construction Engineering]. 2007, no. 10, pp. 44—49.
  7. Zwierzchowska A. Technologie bezwykopowej budowy sieci gazowych, wodociagowych i kanalizacyjnych. Politechnika swietokrzyska. 2006, 180 p.
  8. Rameil M. Handbook of Pipe Bursting Practice. Vulkan verlag, 2007, 351 p.
  9. Otstavnov A.A. Sovremennye materialy i tekhnologii dlya realizatsii zadach reformy ZhKKh [Modern Materials and Technologies to Achieve the Objectives of Housing Reform]. Santekhnika [Journal of Plumbing]. 2004, no. 4, pp. 2—4.
  10. Goncharenko D.F., Korin'ko I.V. Remont i vosstanovlenie kanalizatsionnykh setey [Repairs and Reconstruction of Sewage Systems]. Khar'kov, Rubikon Publ., 1999, 364 p.
  11. Beloborodov V.N., Li A.N., Emelin V.I. Otechestvennye bestransheynye tekhnologii vosstanovleniya truboprovodov [Native Trenchless Technologies of Pipeline Reconstruction]. Krasnoyarsk, SFU Publ., 2010, 192 p.
  12. Baklashov I.V., Kartoziya B.A. Mekhanika podzemnykh sooruzheniy i konstruktsii krepey [Mechanical Design of Underground Structures and Shoring]. Moscow, Nedra Publ., 1992, 257 p.
  13. Khar'kin V.A. Sistematizatsiya i analiz patologiy vodootvodyashchikh setey, podlezhashchikh vosstanovleniyu [Systematization and Analysis of Drainage Networks Pathologies to be Restored]. ROBT [Russian Association on Trenchless Technologies Implementation]. 2001, no. 2, pp. 13—25.
  14. Zwierzchowska A. Optymalizacja doboru metod bezwykopowej budowy. Politechnika swietokrzyska. 2003, pp. 16—19.
  15. Brahler C. City of Helena. California Rutherford 12-inch Diameter Water Pipeline Rehabilitation. Sydney, Australia, NO-DIG, 2013. Available at: http://www.norcalpug.com/nu_upload/Paper_1.pdf. Date of access: 20.12.2013.

Download

Protective coating as a factor to ensure the strength and hydraulic performance of recoverable pipelines

Vestnik MGSU 1/2015
  • Orlov Vladimir Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Head of the Department of Water Supply and Waste Water Treatment, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zotkin Sergey Petrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Informatics and Applied Mathematics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Khrenov Konstantin Evgen’evich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-36-29; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Dezhina Irina Sergeevna - Moscow State University of Civil Engineering (MGSU) Master student, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-36-29; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bogomolova Irina Olegovna - Moscow State University of Civil Engineering (MGSU) Assistant, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 74-82

The authors present an analysis of various types of internal protective pipeline coatings to ensure the strength and hydraulic characteristics of a remodeled pipeline and related coating methods for effective trenchless renovation of engineering systems, water supply systems and sanitation. As protective coating the authors considered a round profile tube of a smaller diameter than of the old pipe, close to the old pipe, sprayed lining on the basis of inorganic and inorganic materials. The article analyzes the methods of trenchless renovation for applying protective coatings: routing in the old pipeline of new pipes made of polymeric materials or polymeric sleeves, centrifugal spraying on the inner surface of pipelines’ inorganic and organic protective coatings. Special attention was paid to bag technology, providing the required strength properties at specific values of the modulus of elasticity and a number of external factors such as the depth of the existing pipe, the existence and magnitude of the horizon groundwater over it. Also attention is paid to the application technology of tape coatings ribbed profile on the inner surface of pipelines. This technology has a unique feature, which is the ability of recoverable pipeline functioning during its renovation by winding an endless belt and the formation of a new pipe. The tape coating winding is carried out by different types of spiral winding machines. The thickness of the protective coating layer forming the tube remains minimal. Inorganic cement-sand and organic coatings were considered as alternative options for repair of pipelines, which allow to localize the defects in the form of a fistula, minor cracks and other damages. However it is noted that a cement-sandy covering is inferior to organic, because it does not provide the strength characteristics of the pipeline system. The main advantage of the organic coating is mudding fistula of a large diameter, making a high wear-resisting pipe, ensuring a smooth surface. Then the protective coating almost merges with the old pipeline. The conclusion is made on the necessity of taking account of the potential for energy saving in case of various protective coatings and implemented trenchless technologies application.

DOI: 10.22227/1997-0935.2015.1.74-82

References
  1. Alekseev M.I., Ermolin Yu.A. Ispol’zovanie otsenki nadezhnosti stareyushchikh kanalizatsionnykh setey pri ikh rekonstruktsii [Use of Reliability Estimation of on Aging Sewer Networks During Their Reconstruction]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2004, no. 6, pp. 21—23. (In Russian)
  2. Dobromyslov A.Ya. Problema dolgovechnosti i nadezhnosti truboprovodnykh sistem [The Problem of Durability and Reliability of Pipeline Systems]. Santekhnika [Sanitary Engineering]. 2003, no. 5, pp. 2—4. (In Russian)
  3. Orlov V.A. Laboratornyy praktikum po rekonstruktsii i vosstanovleniyu inzhenernykh setey [Laboratory Workshop on Reconstruction and Rehabilitation of Engineering Networks]. Moscow, ASV Publ., 2004, 120 p. (In Russian)
  4. Otstavnov A.A. Sovremennye materialy i tekhnologii dlya realizatsii zadach reformy ZhKKh [Modern Materials and Technologies to Achieve the Objectives of the Housing Reform]. Santekhnika [Sanitary Engineering]. 2004, no. 4, pp. 2—4. (In Russian)
  5. Khramenkov S.V., Primin O.G., Orlov V.A., Otstavnov A.A. Reglament ispol’zovaniya polietilenovykh trub dlya rekonstruktsii setey vodosnabzheniya i vodootvedeniya [Regulations on the Use of Polyethylene Pipes for Reconstruction of Water Supply and Sanitation Systems]. Moscow, Miklosh Publ., 2007, 129 p. (In Russian)
  6. Khantaev I.S., Orlov E.V. Truby dlya realizatsii bestransheynykh tekhnologiy protyagivaniya i prodavlivaniya [Pipes for Trenchless Technologies of Pulling and Driving]. Zarubezhnyy i otechestvennyy opyt v stroitel’stve [Foreign and Native Experience in Construction]. 2007, no. 2, pp. 75—86. (In Russian)
  7. Otstavnov A.A., Orlov E.V., Khantaev I.S. Pervoocherednost’ vosstanovleniya truboprovodov vodosnabzheniya i vodootvedeniya [Priority of Recovering Water Supply and Sanitation Pipelines]. Stroitel’nyy inzhiniring [Construction Engineering]. 2007, no. 10, pp. 44—49. (In Russian)
  8. Zwierzchowska A. Technologie bezwykopowej budowy sieci gazowych, wodociagowych i kanalizacyjnych. Politechnika swietokrzyska. 2006, 180 p.
  9. Frassinelli A., Furlani B. Trenchless Pipeline Removal (TPR). NO-DIG 2013. Sydney, Australia, 1—4 September 2013. Available at: http://toc.proceedings.com/22211webtoc.pdf. Date of access: 19.11.2013.
  10. Rameil M. Handbook Of Pipe Bursting Practice. Vulkan Verlag, 2007, 351 p.
  11. Brahler C. City of Helena. California Rutherford 12-inch Diameter Water Pipeline Rehabilitation. NO-DIG 2013. Sydney, Australia, 1—4 September 2013. Available at: http://toc.proceedings.com/22211webtoc.pdf. Date of access: 19.11.2013.
  12. Khar’kin V.A. K voprosu vybora trub iz polietilenov razlichnykh klassov dlya bestransheynoy zameny vetkhikh napornykh i samotechnykh truboprovodov [To the Question of Choosing Pipes Made of PE of Different Classes for Trenchless Replacement of the Old Pressure and Gravity Pipelines]. Santekhnika [Sanitary Engineering]. 2003, no. 5, pp. 34—38. (In Russian)
  13. Orlov V.A., Shlychkov D.I., Koblova E.V. Sravnenie metodov bestransheynoy renovatsii truboprovodnykh sistem v sfere energosberezheniya [Comparing the Methods of Trenchless Renovation of Pipeline Systems in the Field of Energy Saving]. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii pamyati akademika RAN S.V. Yakovleva [Materials of the International Science and Practice Conference Dedicated to the Member of RAS S.V. Yakovlev]. Moscow, MGAKKhiS Publ., 2011, pp. 256—263. (In Russian)
  14. Zwierzchowska A. Optymalizacja doboru metod bezwykopowej budowy. Politechnika swietokrzyska. 2003, 160 p.
  15. Otstavnov A.A., Khantaev I.S., Orlov E.V. K vyboru trub dlya bestransheynogo ustroystva truboprovodov vodosnabzheniya i vodootvedeniya [Selection of Pipes for Trenchless Arrangement of Water Supply and Sanitation Pipelines]. Plasticheskie massy [Journal of Plastic Masses]. 2007, pp. 40—43. (In Russian)
  16. Khar’kin V.A. Sistematizatsiya i analiz patologiy vodootvodyashchikh setey, podlezhashchikh vosstanovleniyu [Systematization and Analysis of the Pathologies of Drainage Networks to be Restored]. ROBT [Russian Society on Implementation of Trenchless Technologies]. 2001, no. 2, pp. 13—25. (In Russian)
  17. Kuliczkowski A., Kuliczkowska E., Zwierzchowska A. Technologie beswykopowe w inzeynierii srodowiska. Wydawnictwo Seidel-Przywecki Sp. 2010, 735 p.
  18. Ishmuratov R.R., Stepanov V.D., Orlov V.A. Opyt primeneniya bestransheynoy spiral’no-navivochnoy tekhnologii vosstanovleniya truboprovodov na ob”ektakh Moskvy [Experience of the Use of Trenchless Spiral-Winding Technology of Piping Recovery on the Objects of Moscow]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2013, no. 6, pp. 27—32. (In Russian)
  19. Khar’kin V.A. Gidravlicheskie osobennosti kanalizatsionnykh setey s uchastkami iz polimernykh trub, ulozhennykh bestransheyno vzamen vetkhikh truboprovodov iz traditsionnykh trub [Hydraulic Characteristics of Sewer Networks with Areas of Plastic Pipes Laid Trenchless Instead of the Old Pipelines of Traditional Pipes]. Santekhnika [Sanitary Engineering]. 2003, no. 4, pp. 30—35. (In Russian)
  20. Orlov V.A., Zotkin S.P., Khar’kin V.A. Vybor optimal’nogo metoda bestransheynogo vosstanovleniya beznapornykh truboprovodov [Choosing the Optimal Method of Trenchless Reconstruction of Gravity Pipeline]. ROBT [Russian Society on Implementation of Trenchless Technologies]. 2001, no. 4, pp. 30—34. (In Russian)
  21. Orlov E.V., Salomeev V.P., Kruglova I.S. Otsenka ostatochnogo resursa napornykh stal’nykh truboprovodov sistem vodosnabzheniya i vodootvedeniya [Residual Life Assessment of Pressure Steel Pipelines for Water Supply and Sanitation Systems]. Problemy razvitiya transportnykh i inzhenernykh kommunikatsiy [Issues of the Development of Transport and Engineering Services]. 2005. no. 3—4, pp. 25—31. (In Russian)
  22. Orlov V.A., Averkeev I.A. Analiz avtomatizirovannykh programm rascheta vodoprovodnykh setey v tselyakh gidravlicheskogo modelirovaniya pri renovatsii truboprovodov [Analysis of CAD Software Designated for Analysis of Water Supply Systems for the Purpose of Hydraulic Modeling Designated for Renovation of Pipelines]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 3, pp. 237—243. (In Russian)
  23. Averkeev I.A., Orlov E.V. Proverennaya nadezhnost’: Issledovanie prochnostnykh vozmozhnostey zashchitnogo pokrytiya vodoprovodnykh trub v period ikh renovatsii [Proved Reliability: Investigation of Strength Characteristics of Protective Coating of Pipelines during their Renovation]. Voda Magazine [Water Magazine]. 2013, no. 5 (69), pp. 46—47. (In Russian)
  24. Nazdrachev I.Yu., Orlov E.V. Tekhniko-ekonomicheskoe sravnenie variantov proektirovaniya remonta truboprovodov sistem vodosnabzheniya [Technical and Economic Comparison of Repair Design Options of Water Piping Systems]. Problemy razvitiya transportnykh i inzhenernykh kommunikatsiy [Issues of the Development of Transport and Engineering Services]. 2007, no. 3—4, pp. 28—39. (In Russian)
  25. Otstavnov A.A., Ustyugov V.A., Dmitriev A.N. K voprosu minimizatsii zatrat na ustroystvo i ekspluatatsiyu podzemnykh vodoprovodov [On Minimization of the Cost of Installation and Operation of Underground Water Pipes]. Santekhnika [Sanitary Engineering]. 2006, no. 9, pp. 38—43. (In Russian)

Download

Leaks in the internal water supply piping systems

Vestnik MGSU 3/2015
  • Orlov Evgeniy Vladimirovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Scienc- es, Associate Professor, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Komarov Anatoliy Sergeevich - LLC “GLAKOMRU” Candidate of Technical Sciences, Director General, LLC “GLAKOMRU”, B. Koptevskiy proezd, Moscow, 8105039, Russian Federation; +7 (499) 183-54-56; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Mel’nikov Fedor Alekseevich - Moscow State University of Civil Engineering (MGSU) student, Institute of Engineering and Ecological Construction and Mechanization, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499)183-36-29; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Serov Aleksandr Evgen’evich - Moscow State University of Civil Engineering (MGSU) student, Institute of Engineering and Ecological Construction and Mechanization, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499)183-36-29; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 40-47

Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold) as a result of impaired integrity, complicating the operation of a system and leading to high costs of repair and equipment restoration. A large number of leaks occur in old buildings, where the regulatory service life of pipelines has come to an end, and the scheduled repair for some reason has not been conducted. Steel pipelines are used in the systems without any protection from corrosion and they get out of order. Leakages in new houses are also not uncommon. They usually occur as a result of low-quality adjustment of the system by workers. It also important to note the absence of certain skills of plumbers, who don’t conduct the inspections of in-house systems in time. Sometimes also the residents themselves forget to keep their pipeline systems and water fittings in their apartment in good condition. Plumbers are not systematically invited for preventive examinations to detect possible leaks in the domestic plumbing. The amount of unproductive losses increases while simultaneous use of valve tenants, and at the increase of the number of residents in the building. Water leaks in the system depend on the amount of water system piping damages, and damages of other elements, for example, water valves, connections, etc. The pressure in the leak area also plays an important role.

DOI: 10.22227/1997-0935.2015.3.40-47

References
  1. Isaev V.N., Chukhin V.A., Gerasimenko A.V. Resursosberezhenie v sisteme khozyaystvenno-pit’evogo vodoprovoda [Resource-saving in Household and Drinking Water Supply System]. Santekhnika [Sanitary Equipment]. 2011, no. 3, pp. 14—17. (In Russian)
  2. Chukhin V.A., Bastrykin R.I., Andrianov A.P. Izuchenie korrozionnykh otlozheniy v truboprovodakh sistem podachi i raspredeleniya pit’evoy vody [Study of Corrosion Deposits in the Piping of Drinking Water Supply and Distribution Systems]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2013, no. 7, pp. 30—36. (In Russian)
  3. Orlov V.A. Puti obespecheniya sanitarnoy nadezhnosti vodoprovodnykh setey [Ways to Ensure the Sanitary Safety of Water Supply Networks]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 1, pp. 181—187. (In Russian)
  4. Mikhaylin A.V., Chukhin V.A. Tekhnologiya obessolivaniya vody metodom reversivnogo elektrodializa s bipolyarnymi membranami [Technology of Desalting Water by the Method of Reverse Electrodialysis with Bipolar Membranes]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2012, no. 9, pp. 49—51. (In Russian)
  5. Guzzon A., Bohn A., Diociaiuti M., Albertano P. Cultured Phototrophic Biofilms for Phosphorus Removal in Wastewater Treatment. Water Research. 2008, vol. 42, no. 16, pp. 4357—4367. DOI: http://dx.doi.org/10.1016/j.watres.2008.07.029.
  6. Sriwiriyarat T., Randall C.W. Performance of IFAS Wastewater Treatment Processes for Biological Phosphorus Removal. Water Research. 2005, vol. 39, no. 16, pp. 3873—3884. DOI: http://dx.doi.org/10.1016/j.watres.2005.07.025.
  7. Pugachev E.A. Sotsial’nye aspekty vodopol’zovaniya. Analiz otnosheniya cheloveka k prirodnomu resursu — vode [Social Aspects of Water Use. Analysis of the Relation of a Human to a Natural Resource — Water]. Tekhnologii mira [Technologies of the World]. 2011, no. 4, pp. 39—47. (In Russian)
  8. Mikhaylin A.V., Chukhin V.A. Besstochnaya tekhnologiya obessolivaniya vody [Drainless Technology of Water Desalting]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 2, pp. 151—153. (In Russian)
  9. Orlov E.V. Sistema vnutrennego vodoprovoda. Novyy tip vodorazbornykh priborov v zdaniyakh. Avtomaty pit’evoy vody [Internal Water Supply System. New Type of Water Folding Devices in Buildings. Drinking Water Machines]. Tekhnika i tekhnologii mira [Equipment and Technologies of the World]. 2013, no. 1, pp. 37—41. (In Russian)
  10. De-Bashan L.E., Hernandez J.P., Morey T., Bashan Y. Microalgae Growth-Promoting Bacteria as «Helpers» for Microalgae: a Novel Approach for Removing Ammonium and Phosphorus from Municipal Wastewater. Water Research. 2004, vol. 38, no. 2, pp. 466—474. DOI: http://dx.doi.org/10.1007/978-1-4020-5765-6_28.
  11. Scolan Y., Korobkin A. Mixed Boundary Value Problem in Potential Theory: Application to the Hydrodynamic Impact (Wagner) Problem. Comptes Rendus Mecanique. 2012, vol. 340, no. 10, pp. 702—705. DOI: http://dx.doi.org/10.1016/j.crme.2012.09.006.
  12. Pugachev E.A., Porokhnya A.E. Effektivnoe ispol’zovanie vody. Proizvodstvennye promyvochnye protsessy na fabrikakh [Efficient Use of Water. Industrial Washing Processes at Factories]. Tekhnika i tekhnologii mira [Equipment and Technologies of the World]. 2014, no. 7, pp. 37—41. (In Russian)
  13. Khurgin R.E., Orlov V.A., Zotkin S.P., Maleeva A.V. Metodika i avtomatizirovannaya programma opredeleniya koeffitsienta Shezi «S» i otnositel’noy sherokhovatosti «n» dlya beznapornykh truboprovodov [Methodology and Automated Program for Determining the Coefficient of Chezy “C” and Relative Roughness “N” For Non-Pressure Pipelines]. Nauchnoe obozrenie [Scientific Review]. 2011, no. 4, pp. 54—60. (In Russian)
  14. Iafrati A., Korobkin A. Asymptotic Estimates of Hydrodynamic Loads in the Early Stage of Water Entry of a Circular Disk. Journal of Engineering Mathematics. 2011, vol. 69, no. 2—3, pp. 199—224.
  15. Zwierzchowska A. Optymalizacja doboru metod bezwykopowej budowy. Politechnika swietokrzyska. 2003, pp. 16—19.
  16. Orlov E.V. Vodo- i resursosberezhenie. Zhilye zdaniya kottedzhnykh i dachnykh poselkov poselkov [Water- and Resource-Saving. Residential Buildings of Cottage and Housing Estates]. Tekhnologii mira [Technologies of the World]. 2012, no. 10, pp. 35—41. (In Russian)
  17. Orlov V.A. Gidravlicheskie issledovaniya i raschet napornykh truboprovodov, vypolnennykh iz razlichnykh materialov [Hydraulic Studies and Calculation of Pressure Pipes Made of Different Materials]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 1, pp. 177—180. (In Russian)
  18. Isaev V.N., Davydova A.A. Pit’evoe i khozyaystvennoe vodosnabzhenie [Drinking and Household Water Supply]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 2, pp. 148—150. (In Russian)
  19. Otstavnov A.A., Khar’kin V.A., Orlov V.A. K tekhniko-ekonomicheskomu obosnovaniyu bestransheynogo vosstanovleniya vetkhikh samotechnykh truboprovodov iz traditsionnykh trub polimernymi [To Feasibility Study of Trenchless Repair of the Old Gravity Pipelines Made of Traditional Pipes With Polymer Ones]. Santekhnika, otoplenie, konditsionirovanie [Plumbing. Heating. Conditioning. Energy Efficiency]. 2004, no. 4, pp. 30—34. (In Russian)
  20. Otstavnov A.A., Orlov E.V., Khantaev I.S. Opredelenie prioritetnykh uchastkov remonta sistem vodosnabzheniya i vodootvedeniya [Definition Of Priority Areas For Water Supply And Sanitation Systems Repair]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2007, no. 3, pp. 25—30. (In Russian)
  21. Orlov V.A. Bionika i bestransheynaya renovatsiya truboprovodnykh setey [Bionics and Trenchless Renovation of Pipeline Systems]. Nauchnoe obozrenie [Scientific Review]. 2013, no. 3, pp. 147—151. (In Russian)
  22. Otstavnov A.A., Primin O.G., Khrenov K.E., Orlov V.A., Khar’kin V.A. O gidroudarakh v podzemnykh truboprovodakh iz polietilenovykh trub [On Hydraulic Impacts in Underground Pipelines Made of Polyethylene Pipes]. Santekhnika, otoplenie, konditsionirovanie [Plumbing. Heating. Conditioning. Energy Efficiency]. 2012, no. 3 (123), pp. 12—17. (In Russian)
  23. Ishmuratov R.R., Stepanov V.D., Orlov V.A. Opyt primeneniya bestransheynoy spiral’no-navivochnoy tekhnologii vosstanovleniya truboprovodov na ob’’ektakh Moskvy [The Experience of Using Trenchless Spiral Winding Technology o Piping Recovery on the Objects In Moscow]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2013, no. 6, pp. 27—32. (In Russian)
  24. Kaczor G., Bergel T. The Effect of Incidental Waters on Pollution Load in Inflows to the Sewage Treatment Plants and to the Receivers of Sewage. Przemysł Chemiczny. 2008, vol. 87, pp. 476—478.
  25. Kaczor G., Bugajski P. Impact of Snowmelt Inflow on Temperature of Sewage Discharged to Treatment Plants. Pol. J. Environ. Stud. 2012, vol. 21, no. 2, pp. 381—386.

Download

Results 1 - 4 of 4