-
Stupakov Aleksandr Alekseevich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, senior research worker, director, Scientific and Production Methodological Center “Industrial Alpinism”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Kapyrin Pavel Dmitrievich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, chair, Department of Mechanization of Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Lelikov Georgiy Dmitrievich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
research worker, Scientific and Production Methodological Center “Industrial Alpinism”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Semenov Pavel Alekseevich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
research worker, Scientific and Production Methodological Center “Industrial Alpinism”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Vasilenko Vasiliy Vladimirovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
engineer, Scientific and Production Methodological Center “Industrial Alpinism”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
With the increase of high-rise construction the volumes of high-rise services on maintenance and monitoring of high-rise buildings also grow. Construction and lifting-transport machines are being produced, which require maintenance on height. New types of work at height appear, which can only be done only by steeple jacks or industrial climbers. Analysis of accidents during high-rise services shows that often the use of unreliable means of protection against falls from a height or misuse of these means leads to emergency situations, as well as errors in the organization and technology of works performance at height. In this regard during the development of safe technologies for high-rise works, creation of new designs and types of personal protective equipment (PPE) against falls from heights and during their production, particular attention should be paid to reliability of these means, as well as the correctness of their use. In order to determine the reliability of personal protective equipment against falls from a height, as well as for certification of these means by the scientific and production methodological center “Industrial alpinism” of MGSU special stands were created for dynamic studies of these means. Dynamic characteristics are investigated by a falling cargo or dummy.
DOI: 10.22227/1997-0935.2015.8.130-139
References
- Stupakov A.A. Obsledovanie i monitoring ventiliruemogo fasada s oblitsovkoy plitami iz natural’nogo granita [Survey and Monitoring of Ventilated Facades with Facing by Plates of Natural Granite]. Academia. Arkhitektura i stroitel’stvo [Academia. Architecture and Construction]. 2009, no. 5, pp. 530—533. (In Russian)
- Stupakov A.A., Razin P.E. Sostoyanie betona po naruzhnoy poverkhnosti Ostankinskoy televizionnoy bashni [State of the Concrete on the Exterior Surface of the Ostankino Television Tower]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 3, vol. 2, pp. 218—226. (In Russian)
- Kudryavtsev E.M. Stroitel’nye mashiny i oborudovanie [Construction Machinery and Equipment]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2012, no. 12 (822), pp. 43—45. (In Russian)
- Kapyrin P.D., Romanova E.C. Analiz sostoyaniya sovremennoy promyshlennosti stroitel’nykh materialov i faktory, sposobstvuyushchie razvitiyu proizvodstva [Analysis of Modern Building Materials Industry and the Factors Contributing to the Development of Production]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4-1, pp. 165—170. (In Russian)
- Stepanov M.A., Mechiev A.V. Analiz neispravnostey pri ekspluatatsii liftov [Analysis of the Faults in the Operation of Elevators]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2014, no. 8 (842), pp. 44—46. (In Russian)
- Stepanov M.A., Turgunova E.N. Issledovanie defektov bashennykh kranov [Study on the Defects of Tower Cranes]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2014, no. 12 (846), pp. 17—19. (In Russian)
- Stupakov A.A. Zhizneobespechenie fasadov vysotnykh zdaniy metodami promyshlennogo al’pinizma [Sustaining the Facades of High-Rise Buildings by Industrial Mountaineering Techniques]. Vysotnye i bol’sheproletnye zdaniya. Tekhnologii inzhenernoy bezopasnosti i nadezhnosti : materialy seminara MGSU 26 maya 2005 g. [Proceedings of the seminar of MGSU “Tall and Large-Span Buildings. Security and Reliability Engineering Technologies. May 26, 2005]. Moscow, Ekspotsentr [Expocenter], 2005. Available at: http://www.know-house.ru/dsp/d28/d28.php/. Date of access: 15.05.2015. (In Russian)
- Stupakov A.A., Lelikov G.D., Semenov P.A., Vasilenko V.V. Obsledovanie i vosstanovlenie vysotnykh ob”ektov metodom promyshlennogo al’pinizma [Inspection and Repair of High-Rise Objects Using Industrial Alpinism]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2015, no. 2 (848), pp. 48—52. (In Russian)
- Eremeev V.B. Neschastnye sluchai v promyshlennom al’pinizme i verkholaznykh rabotakh: sistematizatsiya i analiz prichin [Accidents in Industrial Mountaineering and Steeplejack Works: Systematization and Analysis of the Causes]. Available at: http://alpsvet.ru/neschastnye-sluchai-v-promyslennom-alpinizme-i-verholaznyh-rabotah-sistematizatii-i-analiz-prichin/. Date of access: 18.05.2015. (In Russian)
- Tragediya v Almaty, razbor. Avgust 2009 [Tragedy in Almaty, Analysis. August 2009]. PromAl’pForum. Available at: http://www.promalp.ru/viewtopic.php?f=3&t=20601. Date of access: 18.05.2015. (In Russian)
- Stupakov A.A. Organizatsiya, oborudovanie i bezopasnost’ vysotnykh rabot v stroitel’stve i ekspluatatsii vysotnykh zdaniy i sooruzheniy [Organization, Equipment and Security of the Works at Height in Construction and Operation of Tall Buildings and Structures]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2013, no. 12 (834), pp. 45—48. (In Russian)
- Drozdov A.N., Nemkov S.A. Stend dlya izmereniya energii udara metodom konechnykh skorostey dlya ruchnykh mashin udarno-vrashchatel’nogo deystviya [Stand for Measuring the Impact Energy Using the End Speeds Method for Manual Machines of Shock-Rotary Action]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2014, no. 12 (846), pp. 8—9. (In Russian)
- Belov V.A., Gusev A.A., Zaytseva E.S. Vliyanie geometricheskikh parametrov svarnykh soedineniy s flangovymi shvami na raspredelenie usiliy vdol’ shva [Influence of Geometric Parameters of Welded Joints with Flank Seams on the Distribution of Forces Along a Seam]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2014, no. 11 (845), pp. 20—23. (In Russian)
- Gustov Yu.I., Gustov D.Yu., Voronina I.V. Analiz zavisimostey dlya opredeleniya staticheskoy tverdosti metallicheskikh materialov konstruktsiy i tekhniki [Dependency Analysis for Defining Static Hardness of Metallic Materials of Structures and Equipment]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2015, no. 3 (849), pp. 38—40. (In Russian)
- Gustov Yu.I., Allattouf Н. Issledovanie prochnosti boltov po staticheskoy tverdosti dlya vosstanovleniya i usileniya stroitel’nykh konstruktsiy zdaniy [Study on Strength of Bolts on Static Hardness for the Restoration and Reinforcement of Building Structures of Buildings]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2015, no. 4 (850), pp. 41—43. (In Russian)
- Gustov D.Yu. Mashinostroitel’naya klimatologiya. Osnovy ucheta insolyatsii dlya analiza raboty gidroprivoda SDM [Engineering Climatology. Fundamentals of Accounting for Insolation for the Analysis of the Hydraulic Drive of Road-Building Machines]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2015, no. 1 (847), pp. 17—19. (In Russian)
- Stupakov A.A. Bezopasnost’ i opredelenie riskov raboty na vysote ot ispol’zovaniya strakhovochnogo oborudovaniya [Security and Identification of Risks at the Height while Safety Equipment]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2014, no. 11 (845), pp. 40—44. (In Russian)
- Crawford H. Survivable Impact Forces on Human Body Constrained by Full Body Harness. Available at: http://www.hse.gov.uk/research/hsl_pdf/2003/hsl03-09. Date of access: 18.05.2015.
- Eremeev V.B. Dopustimye sily ryvka na cheloveka v polnoy obvyazke [Survivable Impact Forces on Human Body Constrained by Full Body Harness]. Available at: http://www.alpsvet.ru/dopustimye-sily-ryvka-na-cheloveka-v-polnoi-obvizke-survivable-impact-forces-on-human-bod-y-constrained-by-full-body-harness/. Date of access: 18.05.2015.
- Stupakov A.A., Lelikov G.D. Raschet riskov ot ispol’zovaniya sredstv individual’noy zashchity ot padeniya s vysoty [Calculation of Risks Caused by the Use of Personal Protective Equipment Against Falls from Height]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2014, no. 12 (846), pp. 50—54. (In Russian)
-
Zaripova Victoria Madiyarovna -
Astrakhan State University of Architecture and Civil Engineering (ASUACE)
Candidate of Technical Sciences , Associate Professor of the Department of Computer Aided Design and Modeling Systems, Astrakhan State University of Architecture and Civil Engineering (ASUACE), 18 Tatishchev st., Astrakhan, 414056, Russian Federation.
-
Petrova Irina Yur’evna -
Astrakhan State University of Architecture and Civil Engineering (ASUACE)
Doctor of Technical Sciences, Professor, First Vice-Rector, Astrakhan State University of Architecture and Civil Engineering (ASUACE), 18 Tatishchev st., Astrakhan, 414056, Russian Federation.
-
Shumak Kirill Alekseevich -
Astrakhan State University of Architecture and Civil Engineering (ASUACE)
Senior Lecturer of the Department of Computer Aided Design and Modeling Systems, Astrakhan State University of Architecture and Civil Engineering (ASUACE), 18 Tatishchev st., Astrakhan, 414056, Russian Federation.
-
Lezhnina Yulia Arkad’evna -
Astrakhan State University of Architecture and Civil Engineering (ASUACE)
Candidate of Technical Sciences, Associate Professor of the Department of Computer Aided Design and Modeling Systems, Astrakhan State University of Architecture and Civil Engineering (ASUACE), 18 Tatishchev st., Astrakhan, 414056, Russian Federation.
Subject: automation of calculation of dynamic characteristics of the device being designed in the system of conceptual design of sensor equipment, structurally-parametric models of dynamic processes and algorithms for the automated calculation of the qualitative characteristics of elements of the information-measuring and control systems (IMCS). The stage of conceptual design most fully determines the operational characteristics of technical systems. However, none of the information support systems of this stage provides an opportunity to evaluate the performance characteristics of the element being designed taking into account its dynamic characteristics. Research objectives: increasing the effectiveness of the evaluation of dynamic characteristics of sensitive elements of the information-measuring and control systems of a smart house. Materials and methods: when solving the problems posed, the mathematical apparatus of system modeling was used (in particular, the energy-information method of modeling processes of various physical nature that occur in the sensor equipment); the main provisions of the theory of automatic control, the theory of constructing computer-aided design systems, the theory of operational calculus; basics of conceptual design of elements of the information-measuring and control systems. Results: we compared the known automated systems for conceptual design of sensors, highlighted their advantages and disadvantages and we showed that none of these systems allows us to investigate dynamic characteristics of the element being designed in a simple and understandable for engineer form. The authors proposed using energy-information method of modeling for the synthesis of operation principles of sensors and analysis of their dynamic characteristics. We considered elementary dynamic chains and issues of synthesis of parametrical structural schemes that reflect the dynamics of the process with the use of mathematical apparatus of operational calculus. We developed the project of automated system of the conceptual design of the sensor equipment that allowed us to visualize construction of the parametrical structural schemes and representation of evaluation results of the dynamic characteristics. Conclusions: it was shown that the energy-information models of chains of various physical nature can be used for synthesis of parametrical structural schemes with dynamic links. The mathematical apparatus was developed for evaluation of dynamic characteristics of parametrical structural schemes in analytic form. We also presented the information flow diagram and the functional model of the subsystem of synthesis of sensor operation principals with allowance for dynamic characteristics.
DOI: 10.22227/1997-0935.2017.12.1424-1434
-
Seregin Sergey Valer’evich -
Komsomolsk-na-Amure State Technical University
postgraduate student, Department of Construction and Architecture, Komsomolsk-na-Amure State Technical University, 27 Lenin st., Komsomolsk-on-Amure, 681013, Russian Federation, (4217) 24-11-41;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
Thin cylindrical shells are widely used in construction, engineering and other industries. In case of designing a reservoir for the isothermal storage of liquefied gases such cases are inevitable, when housing requires various technical holes. A point wise added mass can appear into practice in the form of suspended spotlights, radar, architectural inclusions in buildings and structures of various purposes. It is known, that the dynamic asymmetry as an initial irregular geometric shape, including holes, and the added mass leads to specific effects in shells. In the paper the impact of a cut on the frequency and form of its own vibrations of thin circular cylindrical shells is theoretically examined with the help of the equations of linear shallow shell theory. For modal equations with Nav’e boundary conditions, we used the Bubnov - Galerkin method. The authors have expressed a formula for finding the lowest of the split-frequency vibrations of a shell with a cutout. It is stated, that in case of an appropriate choice of added mass value the lower frequencies are comparable with the case of vibrations of a shell with a hole. By numerical and experimental modeling and finite element method in the environment of MSC "Nastran" oscillation frequencies a shell supporting a concentrated mass and a shell with a cutout were compared. It is shown, that the results of the dynamic analysis of shells with holes with a suitable choice of the attached mass values are comparable with the results of the analysis of shells carrying a point mass. It was concluded that the edges in the holes, significantly affect the reduction in the lowest frequency, and need to be strengthened.
DOI: 10.22227/1997-0935.2014.4.52-58
References
- Dyshko A.L., Pavlenko I.D., Selivanov Yu. M. Issledovanie rezonansnykh kolebaniy obolochek s otverstiyami [Investigation of Resonant Vibrations of the Shells with Holes]. Smeshannye zadachi mekhaniki deformiruemykh sred. Sbornik nauchnykh trudov [Mixed Problems of Deformable Media Mechanics. Collection of Scientific Works]. Dnepropetrovsk, DDU Publ., 1995, pp. 58—66.
- Zarutskiy V.A., Telalov A.I. Kolebaniya tonkostennykh obolochek s konstruktivnymi osobennostyami. Obzor eksperimental'nykh issledovaniy [Vibrations of Thin-walled Shells with Constructive Features. Overview of Experimental Studies]. Prikladnaya Mekhanika [Applied Mechanics]. 1991, vol. 278, no. 4, pp. 3—9.
- Kubenko V.D., Koval'chuk P.S., Krasnopol'skaya T.S. Nelineynoe vzaimodeystvie form izgibnykh kolebaniy tsilindricheskikh obolochek [Nonlinear Interaction of Flexural Vibrations Forms of Cylindrical Shells]. Kiev, Moscow, Naukova dumka Publ., 1984, 220 p.
- Leyzerovich G.S., Taranukha N.A. Neochevidnye osobennosti dinamiki krugovykh tsilindricheskikh obolochek [Non-obvious Features of the Dynamics of Circular Cylindrical Shells]. Izvestiya RAN MTT [News of RAS Mechanics of Solids]. 2008, no. 2, pp. 96—105.
- Leyzerovich G.S., Prikhod'ko N.B., Seregin S.V. O vliyanii maloy prisoedinennoy massy na kolebaniya raznotolshchinnogo krugovogo kol'tsa [Effect of Small Added Mass on the Fluctuations of Gage Circular Ring]. Stroitel'stvo i rekonstruktsiya [Building and Reconstruction]. 2013, no. 4, pp. 38—41.
- Leyzerovich G.S., Prikhod'ko N.B. Seregin S.V. O vliyanii maloy prisoedinennoy massy na rasshcheplenie chastotnogo spektra krugovogo kol'tsa s nachal'nymi nepravil'nostyami [Effect of Small Added Mass on Splitting of the Frequency Spectrum of a Circular Ring with Initial Irregularities]. Stroitel'naya mekhanika i raschet sooruzheniy [Structural Mechanics and Structures Calculation]. 2013, no. 6, pp. 49—51.
- Mikhlin S.G. Variatsionnye metody v matematicheskoy fizike [Variational Methods in Mathematical Physics]. Moscow, 1957, 440 p.
- Taranukha N.A., Leyzerovich G.S. O vliyanii nachal'nykh otkloneniy ot ideal'noy krugovoy formy tsilindricheskikh obolochek na sobstvennye izgibnye kolebaniya [On the Influence of Initial Deviations from the Perfectly Circular Shape of Cylindrical Shells on their Own Flexural Vibrations]. PMTF [Applied Mathematics and Technical Physics]. 2001, vol. 42, no. 2, pp. 180—187.
- Taranukha N. A., Leyzerovich. G.S. Novye resheniya v dinamike «nepravil'nykh» obolochek [New Solutions in the Dynamics of Imperfect shells]. Vladivostok, Dal'nauka Publ., 2007, 203 p.
- Amabili M., Garziera R., Carra S. The Effect of Rotary Inertia of Added Masses on Vibrations of Empty and Fluid-filled Circular Cylindrical Shells. Journal of Fluids and Structures. 2005, vol. 21, no. 5—7, pp. 449—458. DOI:10.1016/j.jfluidstructs.2005.07.018.
- Amabili M., Garziera R. Vibrations of Circular Cylindrical Shells with Nonuniform Constraints, Elastic Bed and Added Mass; Part III: Steady Viscous Effects on Shells Conveying Fluid. Journal of Fluids and Structures. 2002, vol. 16, no. 6, pp. 795—809. DOI:10.1006/jfls.2002.0446.
- Avramov K.V., Pellicano F. Dynamical Instability of Cylindrical Shell with Big Mass at the End. Reports of the National Academy of Science of Ukraine. 2006, no. 5, pp. 41—46.
- Mallon N.J. Dynamic Stability of a Thin Cylindrical Shell with Top Mass Subjected to Harmonic Base-acceleration. International Journal of Solids and Structures. 2008, no. 45 (6), pp. 1587—1613. DOI: 10.1016/j.ijsolstr.2007.10.011.
- Mallon N.J., Fey R.H.B., Nijmeijer H. Dynamic Stability of a Base-excited Thin Orthotropic Cylindrical Shell with Top Mass: Simulations and Experiments. Journal of Sound and Vibration. 2010, vol. 329, no. 15, pp. 3149—3170. DOI: 10.1016/j.jsv.2010.02.007.
- Tobjas S. A. A Theory of Imperfection for the Vibration of Elastic Bodies of Revolution. Engineering. 1951, vol. 44, no. 70, pp. 409—420.
-
Loktev Aleksey Alekseevich -
Moscow State University of Civil Engineering (МGSU)
+7 (499) 183-24-01, Moscow State University of Civil Engineering (МGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Stepanov Roman Nikolaevich -
Moscow State University of Civil Engineering (МGSU)
Candidate of Technical Sciences, Associate Professor, Department of Theoretical Mechanics and Aerodynamics; +7 (499) 183-24-01, Moscow State University of Civil Engineering (МGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The authors study the distribution pattern of wave surfaces inside the orthotropic plate having curvilinear anisotropy. Dynamic behavior of the target is described by wave equations taking account of the transverse shear and rotational inertia of transverse cross-sections and of the ability to simulate the process of propagation of elastic waves. These equations are solved using the asymptotic method employed for decomposition of unknown values into time and spatial value series.The problem is resolved to identify the stress values in the points of interaction between direct waves and those reflected by the bottom face of the plate. Description of patterns of propagation of wave fronts inside the target requires a clear understanding of the nature of each wave, its velocity, etc.The research completed by the co-authors has proven that any increase in the thickness of a plate increases maximal stresses in the area of wave formation, while stresses in points of interaction between elastic waves go down, and peak stresses involving transverse waves go down more intensively. Nonetheless, any encounter between direct and reflected waves may either increase, or reduce the final values of principal stresses.The methodology developed by the authors may be employed to identify the coordinates of the points of maximal stresses occurring in medium thickness reinforced orthotropic plates. Awareness of these coordinates makes it possible to identify the appropriate diameter and patterns of arrangement of reinforcing elements.
DOI: 10.22227/1997-0935.2013.3.72-80
References
- Thomas T.Y. Plastic Flow and Fracture in Solids. New York, L., Acad. Press, 1961.
- Malekzadeh K., Khalili M.R., Mittal R.K. Response of Composite Sandwich Panels with Transversely Flexible Core to Low Velocity Transverse Impact: A New Dynamic Model. International Journal of Impact Engineering. 2007, vol. 34, pp. 522—543.
- Rossikhin Yu.A., Shitikova M.V. A Ray Method of Solving Problems Connected with a Shock Interaction. Acta Mechanica, 1994, vol. 102, no. 1-4, pp. 103—121.
- Loktev A.A. Udarnoe vzaimodeystvie tverdogo tela i uprugoy ortotropnoy plastinki [Impact Interaction between a Solid Body and an Elastic Orthotropic Plate]. Mekhanika kompozitsionnykh materialov i konstruktsiy [Mechanics of Composite Materials and Structures]. 2005, vol. 11, no. 4, pp. 478—492.
- Erofeev V.I., Kazhaev V.V., Semerikova N.P. Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineynost’ [Waves inside Rods. Dispersion. Dissipation. Non-linearity.]. Moscow, FIZMATLIT Publ., 2002, 208 p.
- Eliseev V.V. Mekhanika uprugikh tel [Mechanics of Elastic Bodies]. St.Petersburg, SPbGTU Publ., 1999, 341 p.
- Biryukov D.G., Kadomtsev I.G. Uprugoplasticheskiy neosesimmetrichnyy udar parabolicheskogo tela po sfericheskoy obolochke [Elastoplastic Assymmetric Concussion of a Parabolic Body against a Spherical Shell]. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied Mechanics and Applied Physics]. 2005, vol. 46, no. 1, pp. 181—186.
- Loktev A.A. Dinamicheskiy kontakt udarnika i uprugoy ortotropnoy plastinki pri nalichii rasprostranyayushchikhsya termouprugikh voln [Dynamic Contact between a Striker and an Elastic Orthotropic Plate Subject to Existence of Evolving Thermoelastic Waves]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics]. 2008, vol. 72, no. 4, pp. 652—658.
- Rossikhin Yu.A., Shitikova M.V. The Ray Method for Solving Boundary Problems of Wave Dynamics for Bodies Having Curvilinear Anisotropy. Acta Mechanica, 1995, vol. 109, no. 1-4, pp. 49—64.
- Olsson R., Donadon M.V., Falzon B.G. Delamination Threshold Load for Dynamic Impact on Plates. International Journal of Solids and Structures. 2006, vol. 43, pp. 3124—3141.
- Achenbach J.D., Reddy D.P. Note on Wave Propagation in Linear Viscoelastic Media. Z. Angew. Math. Phys. 1967, vol. 18, pp. 141—144.
- Al-Mousawi M.M. On Experimental Studies of Longitudinal and Flexural Wave Propagations. An Annotated Bibliography. Applied Mechanics Reviews, 1986, vol. 39, no. 6, pp. 853—864.
- Karagiozova D. Dynamic Buckling of Elastic-plastic Square Tubes under Axial Impact. I. Stress Wave Propagation Phenomenon. International Journal of Impact Engineering. 2004, vol. 30, pp. 143—166.
- Kukudzjanov V.N. Investigation of Shock Wave Structure in Elasto-visco-plastic Bar Using the Asymptotic Method. Archive of Mechanics, 1981, vol. 33, no. 5, pp. 739—751.
- Sun C.T. Transient Wave Propagation in Viscoelastic Rods. ASME. Ser. E, J. Appl. Mech. 1970, vol. 37, pp. 1141—1144.
- Olsson R. Mass Criterion for Wave Controlled Impact Response of Composite Plates. Composites. Part A. 2000, vol. 31, pp. 879—887.
- Tan T.M., Sun C.T. Wave Propagation in Graphite/Epoxy Laminates due to Impact. NASA CR, 1982, 168057.
-
Aversh'ev Anatoliy Sergeevich -
Moscow State University of Civil Engineering (MSUCE)
master student, Institute of Fundamental Educatio, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Loktev Alexey Alexeevich -
Moscow State University of Civil Engineering (MSUCE)
Candidate of Physical and Mathematical Sciences, Associated Professor, Department of Theoretical Mechanics and Aerodynamics, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
In this paper, a high velocity impact produced by a spherical striker and a target are considered; different stages of loading and unloading, target deformations and propagation of non-stationary wave surfaces within the target are analyzed. The problem of the strike modeling and subsequent deformations is solved by using not only the equations of mechanics of deformable rigid bodies, but also fluid mechanics equations. The target material is simulated by means of an ideal "plastic gas". Modeling results and theoretical calculations are compared to the experimental results. The crater depth, its correlation with the striker diameter, values of the pressure and deformations of the target underneath the contact area are determined as the main characteristics of dynamic interaction.
DOI: 10.22227/1997-0935.2012.7.51 - 59
References
- Mamadaliev N., Moginov R.G. O rasprostranenii i vzaimodeystvii uprugo-plasticheskikh voln pri udare o zhestkuyu pregradu [About the Diffusion and Interaction of Elasto-plastic Waves in the Event of an Impact into a Rigid Target]. Sovremennye problemy mekhaniki mnogofaznykh sred i rasprostranenie voln v sploshnoy sfere [Modern Problems of Mechanics of Multiphase Media and Propagation of Waves in the Continuous Media], a Conference. Collected works. Tashkent, 1999, pp. 83—86.
- Timoshenko S.P., Gud’er Dzh. Teoriya uprugosti [Theory of Elasticity]. Moscow, Nauka Publ., 1979, 560 p.
- Loktev A.A. Udarnoe vzaimodeystevie tverdogo tela i uprugoy ortotropnoy plastinki [Impact-Driven Interaction of a Rigid Body and an Elastic Orthotropic Plate]. Mekhanika kompozitsionnykh materialov i konstruktsiy [Mechanics of Composite Materials and Structures]. 2005, vol. 11, no. 4, pp. 478—492.
- Loktev A.A. Dinamicheskiy kontakt udarnika i uprugoy ortotropnoy plastinki pri nalichii rasprostranyayushchikhsya termouprugikh voln [Dynamic Contact between a Striker and an Orthotropic Plate in the Presence of Propagating Thermo-elastic Waves]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics]. 2008, vol. 72, no. 4, pp. 652—658.
- Filippov A.P. Poperechnyy uprugiy udar tyazhelym telom po krugloy plite [Lateral Elastic Impact Produced by a Heavy Body onto a Circular Plate]. Izv. AN SSSR. Mekhanika tverdogo tela. [Bulletin of Academy of Sciences of the USSR. Rigid Body Mechanics]. 1971, no. 6, pp. 102—109.
- Veklich N.A. O rasprostranenii i vzaimodeystviy uprugo-plasticheskikh voln v sterzhne pri udare o pregradu [About the Propagation and Interaction of Elasto-Plastic Waves in a Rod Under the Impact against an Obstacle]. Izv. AN SSSR. Mekhanika tverdogo tela. [Bulletin of Academy of Sciences of the USSR. Rigid Body Mechanics]. 1970, no. 4, pp. 182—185.
- Kil’chevskiy N.A. Teoriya soudareniya tverdykh tel [Theory of Collision of Rigid Bodies]. Kiev, Naukova Dumka Publ., 1969, 246 p.
- Loktev A.A. Uprugoplasticheskaya model’ vzaimodeystviya tsilindricheskogo udarnika i plastinki [Elasto-plastic Model of Interaction of a Cylinder-shaped Striker and a Plate]. Pis’ma v zhurnal tekhnicheskoy fiziki [Letters to the Journal of Applied Physics]. 2007, vol. 33, no. 16, pp. 72—77.
- Schonberg W.P., Williamsen J.E. RCS-based Ballistic Limit Curves for Non-Spherical Projectiles Impacting Dual-Wall Spacecraft Systems. International Journal of Impact Engineering. 2006, vol. 33, pp. 763—770.
- Fujii K., Yasuda E., Akatsu T., Tanabe YA. Effect of Characteristics of Materials on Fracture Behavior and Modeling Using Graphite-Related Materials with a High-Velocity Steel Sphere. International Journal of Impact Engineering. 2003, vol. 28, pp. 985—999.
- Malama Yu.G. Chislennoe modelirovanie vysokoskorostnogo udara po polubeskonechnoy misheni [Numerical Modeling of a High-velocity Impact onto a Semi-Infinite Target]. Preprint no. 495 IKI AN SSSR [Institute of Airspace Research of the Academy of Sciences of the USSR]. Moscow, 1979, 36 p.
- Rakhmatulin Kh.A., Sagomonyan A.Ya., Alekseev N.A. Voprosy dinamiki gruntov [Soil Dynamics Issues]. Moscow, Moscow State University Publ., 1964, 239 p.
- Skalkin A.S., Suntsov G.N., Shokolov A.G., Yakhlakov Yu.V. Issledovanie protsessa krateroobrazovaniya pri vysokoskorostnom vozdeystvii alyuminievoy chastitsy na massivnuyu pregradu iz splava AMg-6 [Research of the Process of Crater Formation against a High Velocity Impact Produced by an Aluminium Particle onto a Big Obstace Made of AMg-6 Alloy]. Kosmonavtika i raketostroenie [Cosmonautics and Rocket Engineering]. 2011, no. 1(62), pp. 65—73.
- Sapozhnikov A.T., Mironova E.E., Shakhova L.N. Uravnenie sostoyaniya alyuminiya s opisaniem plavleniya, ispareniya i ionizatsii [Aluminium State Equation with a Description of Smelting, Evaporation and Ionization]. 8th Session of Zababakhinskie Scientific Readings. Chelyabinsk, 2005, pp. 1—12.
-
Bakhtin Vadim Fedorovich -
Expert
Open Joint Stock Company
Director, Civil Engineering Department
8 (473) 278-89-91, Expert
Open Joint Stock Company, 82 Konstruktorov St., Voronezh, 394038, Russian Federation.
-
Chernikov Igor Yurevich -
Expert Open Joint Stock Company
Specialist in Examination of Buildings and Structures, Civil
Engineering Department
8 (473) 278-89-91, Expert Open Joint Stock Company, 82 Konstruktorov St., Voronezh, 394038,
Russian Federation.
-
Loktev Alexey Alexeevich -
Moscow State University of Civil
Engineering
Candidate of Physical and Mathematical Sciences, Associated
Professor, Department of Theoretical Mechanics and Aerodynamics
8 (499) 183-24-01, Moscow State University of Civil
Engineering, 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
Installation of antenna masts and towers that have cellular signal transmission equipment
mounted represents a relevant problem in the urban development. Given its density, as well as the
multiplicity of multistory residential and offi ce buildings, masts can be mounted onto existing buildings
and structures. For this purpose, the analysis of a metal mast itself and a ceiling panel on which it is
to rest should be performed in respect of different types of loading. This task is of utmost importance,
since original designs of buildings fail to take account of any supplementary static or dynamic loads.
Numerical and analytical methods are used for the purpose of the analysis. The analysis of cellular
signal transmission masts is performed numerically with the help of a software programme, while the
calculation of the ceiling panel is performed on the basis of a combined scheme. As a result, the authors
demonstrate the safety of installation of high-altitude masts onto existing structures exposed to
varying loads, including wind and ice loads.
DOI: 10.22227/1997-0935.2012.8.66 - 75
References
- RD 45.162—2001. Vedomstvennye normy tekhnologicheskogo proektirovaniya. «Kompleksy setey sotovoy i sputnikovoy podvizhnoy svyazi obshchego pol’zovaniya» [Governing Documents 45.162—2001. Local Norms of Technology-related Design. “Networks of General Mobile Cellular and Satellite Communications”. Moscow, Institute of Cellular Communications, 2001.
- SanPiN 2.2.4/2.18.055—96. Sanitarnye pravila i normy na elektromagnitnye izlucheniya radiochastotnogo diapazona (EMI RCh): utv. postanovleniem Goskomsanepidnadzora ot 8.05.96 g. № 9. [Sanitary Rules and Norms 2.2.4/2.18.055—96. Sanitary Rules and Norms Applicable to Electromagnetic Emissions of the Radio Frequency Bandwidth, approved by the Resolution issued by the State Committee for Sanitary and Epidemiological Supervision on May 08, 1996, no. 9].
- OSTN 600—93. Otraslevye stroitel’no-tekhnologicheskie normy na montazh sooruzheniy i ustroystv svyazi, radioveshchaniya i televideniya: utv. prikazom Minsvyazi RF ot 15.07.93 g. № 168. [Industrial Construction Norms 600—93. Industrial Construction Norms Applicable to Installation of Communication, Radio and Television Structures and Facilities. Approved by the Order of the Ministry of Communications of the Russian Federation on July 15, 1993, no. 168].
- PUE—1998, 1999 gg. Pravila ustroystva elektroustanovok: utv. Mintopenergo RF, Gosenergonadzorom Rossii, 1998, 1999. [Rules of Setup of Power-Driven Units. Approved by the Ministry of Fuel and Energy of the Russian Federation and the State Energy Supervision Committee of Russia in 1998 and 1999].
- GOST 3062—80*. Kanat stal’noy odinarnoy svivki. [State 3062—80*. Standard Single-lay Steel Wire Rope].
- SNiP 2.03.01—84*. Nagruzki i vozdeystviya. [Construction Norms and Rules 2.03.01—84*. Loads and Actions]. Moscow, State Construction Committee, 1999.
- SNiP 2.03.06—85. Alyuminievye konstruktsii. [Construction Norms and Rules 2.03.06—85. Aluminum Structures]. Moscow, State Construction Committee, 1985.
- Machty alyuminievye reshetchatye dlya radioreleynoy svyazi tipa MAR 5274-176-05775641-RE. Rukovodstvo po ekspluatatsii i montazhu. [Aluminum Latticework Masts for Radio Communication Systems of MAR 5274-176-05775641-RE Type. Guidelines for Operation and Installation].
- SNiP II-23—81*. Stal’nye konstruktsii. [Construction Norms and Rules II-23—81*. Steel Structures]. Moscow, State Construction Committee, 1989.
- Loktev A.A. Udarnoe vzaimodeystvie tverdogo tela i uprugoy ortotropnoy plastinki [Impact-driven Interaction between a Solid Body and an Elastic Orthotropic Plate]. Mekhanika kompozitsionnykh materialov i konstruktsiy [Mechanics of Composite Materials and Structures]. 2005, vol. 11, no. 4, pp. 478—492.
- Loktev A.A. Dinamicheskiy kontakt udarnika i uprugoy ortotropnoy plastinki pri nalichii rasprostranyayushchikhsya termouprugikh voln [Dynamic interaction between the striker and an elastic orthotropic plate in the presence of diffusive thermoelastic waves]. Applied mathematics and mechanics, 2008. vol. 72. no. 4, pp. 652—658.
- A fi nite element model for impact simulation with laminated glass / M. Timmel, S. Kolling, P. Osterrieder, P.A. Du Bois // International Journal of Impact Engineering. 2007. P. 1465—1678.
- Suemasu H., Maier M. An analytical study on impact behavior of axisymmetric composite plates // Adv. Composite Materials. 1995. V. 5. № 1. P. 17—33.
- Yapici A., Metin M. Effect of low velocity impact damage on buckling properties // Engineering. 2009. № 1. P. 161—166.
- SNiP 2.03.01—84*. Betonnye i zhelezobetonnye konstruktsii. [Construction Norms and Rules 2.03.01—84*. Concrete and Reinforced Concrete Structures]. Moscow, State Construction Committee, 1989.
-
Rumyantsev Anton Andreevich -
Moscow State University of Civil Engineering (MSUCE)
junior researcher, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Sergeevtsev Evgeniy Yur'evich -
Moscow State University of Civil Engineering (MSUCE)
postgraduate student, Moscow State University of Civil Engineering (MSUCE), Mytishchi Branch, 50 Olimpiyskiy prospect, Moscow Region, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The authors describe the methodology and results of dynamic field testing of the building of a universal pool under construction, as well as its eigenfrequencies, identified through the employment of a computer model.
The subject of the research represents the building of a universal pool under construction in Anapa. The general goal of this research is to identify the seismic stability of the building structure. An unbalance-type vibration machine was used in the course of the testing procedure. The machine was designed and manufactured at Moscow State University of Civil Engineering.
Identification of natural vibrations of building structures and verification of the identity of the computer model and the natural behaviour of the structure were to be completed to assess the required modes of operation of the vibration machine. Identification of full-scale dynamic characteristics was performed through the employment of the impulse method of vibration excitation.
Comparative analysis of experimental vibration frequencies and eigenfrequencies identified in the course of calculations based on different mathematical models demonstrates their similarity in terms of local shapes of vibrations, namely, in terms of buckling vibrations of an "annular" beam employed for the purpose of measurements taken in the course of the testing procedure. Frequency values identified in the course of testing and calculations vary from 4.5 to 19.8 Hz.
Calibration of the vibration machine represents another objective of the experiment. The experiment has demonstrated that the whole operating range of frequencies (2 to 15Hz) is to be employed in the course of testing procedures described above.
DOI: 10.22227/1997-0935.2012.5.93 - 97
References
- Shablinskiy G.E., Isaykin A.S. Retrospektivnaya otsenka osobo otvetstvennykh sooruzheniy na osnove naturnykh dinamicheskikh issledovaniy [Retrospective Assessment of Structures of Major Importance on the basis of Dynamic Field Tests]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Construction], 1997, no. 8.
- Shablinskiy G.E., Zubkov D.A., Naturnye dinamicheskie issledovaniya stroitel'nykh konstruktsiy [Full-scale Dynamic Testing of Structures]. Moscow, ASV Publ., 2009.