-
Orlov Vladimir Aleksandrovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, Professor, Head of the Department of Water Supply and Waste Water Treatment, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Nechitaeva Valentina Anatol'evna -
Moscow State University of Civil Engineering (MGSU)
Associate Professor, Department of Water Sup- ply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Bogomolova Irina Olegovna -
Moscow State University of Civil Engineering (MGSU)
Assistant, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Shaykhetdinova Yuliya Aleksandrovna -
Moscow State University of Civil Engineering (MGSU)
student, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Daminova Yuliya Farikhovna -
Moscow State University of Civil Engineering (MGSU)
student, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments ad- sorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple, quick, effective, economical and environmentally safe compared to other methods, allowing to remove the growths of biofilms and other pollution and maintain the hydraulic performance of pipeline operation at the expense of drawing on the internal surface of pipes of ice crust.
DOI: 10.22227/1997-0935.2014.1.133-138
References
- Khramenkov S.V. Strategiya modernizatsii vodoprovodnoy seti [The Modernization Strategy of Water Supply Systems]. Moscow, Stroyizdat Publ., 2005, 398 p.
- Kuliczkowski A., Kuliczkowska E., Zwierzchowska A. Technologie beswykopowe w inzeynierii srodowiska. Wydawnictwo Seidel-Przywecki Sp. Kielce, 2010, 735 p.
- Pinguet J.-F., Meynardie G. Reseaux d'assainissement: du diagnostic a la rehabilitation. Eau, Industry, Nuisances. 2006, no. 295, pp. 39—43.
- Zwierzchowska A. Technologie bezwykopowej budowy sieci gazowych, wodociagowych i kanalizacyjnych. Politechnika swietokrzyska. Kielce, 2006, 180 p.
- Rameil M. Handbook of Pipe Bursting Practice. Vulkan verlag. Essen, 2007, 351 p.
- Orlov V.A., Meshkova N.I. Ul'trazvukovaya sistema Piglet. Vnutrenniy osmotr i prochistka truboprovodov [Ultrasound System Piglet. Internal Inspection and Cleaning of Pipelines]. Tekhnologii Mira [Technologies of the World]. 2012, no. 5, pp. 43—44.
- Stephenson M. Ice Pigging — a NO-DIG Technique for Cleaning Pressurized Pipes. NO-DIG 2013, Sydney (Australia). Available at: www.nodigdownunder.com. Date of access: 19.11.2013.
- Khramenkov S.V., Orlov V.A., Khar'kin V.A. Optimizatsiya vosstanovleniya vodootvodyashchikh setey [Restoration Optimization of Gravity Systems]. Moscow, Stroyizdat Publ., 2002, pp. 160.
- Santiago A., Durango M. Most Advanced Technology for Pipeline Inspection in the World: See, Measure and Navigate in 3D through Pipes and Manholes. NO-DIG 2012, Sao Paulo (Brasil). Available at: www.nodigsaupaulo2012.com. Date of access: 22.02.2013.
- Orlov V.A., Orlov E.V., Zverev P.V. Tekhnologii mestnogo bestransheynogo remonta vodootvodyashchikh truboprovodov [Technologies for Sectional Trenchless Repair of Water Discharge Pipelines]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 7, pp. 86—95.
-
Orlov Vladimir Aleksandrovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, Professor, Head of the Department of Water Supply and Waste Water Treatment, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Chrenov Konstantin Evgen'evich -
Moscow State University of Civil Engineering (MGSU)
graduate student, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Bogomolova Irina Olegovna -
Moscow State University of Civil Engineering (MGSU)
Assistant, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The article provides the information on a promising technology for trenchless repair named Swagelining, which supposes pulling into the old pipeline the new polymer with its preliminary thermo-mechanical compression and further straightening. The coauthors present the results of the calculations determining the thickness of the polyethylene pipes after compression and straightening in the old pipeline depending on the initial diameter in case of different ratio of the diameter to the wall thickness (SDR) and the dynamics of the changes in hydraulic performance after repair work on the pipeline using the method Swagelining. The concept of the energy saving potential is formed in addition to a no-dig repair for pressure piping systems, water supply, and its magnitude. On the basis of the research results, the authors formulate the principles of the energy efficiency potential after the implementation of the trenchless technology of drawing the old pipeline with new polymer pipes with their preliminary thermo-mechanical compression and subsequent area enlargement. The technology Swagelining is described and the authors develop a mathematical model that illustrates the behavior of the pipeline in the process of shrink operations. Such parameters are analyzed as changing the diameter of the pipeline at thermo-mechanical compression, the hydraulic parameters of the new (polymer) and old (steel) pipelines, energy savings on one-meter length of the pipeline. The calculated values of the electric power economy on the whole length of the pipeline repair section with a corresponding flow of transported waters.The characteristics and capabilities of the technology of trenchless renovation Swagelining allows achieving simultaneously the effect of resource saving (eliminationof the defects and, as a consequence, of water leakage) and energy saving (reduction in the water transportation cost).A numerical example of the old steel pipeline renovation shows the calculated data, which proves the efficiency of the considered technology. The calculation results can be used as base material for designers when selecting the final decision of the alternative at reconstruction of dilapidated pipelines by Swagelining using a wide range of polymer pipes with the corresponding value of the SDR.
DOI: 10.22227/1997-0935.2014.2.105-113
References
- Federal'nyy zakon RF ot 17.12.2011 ¹ 416-FZ «O vodosnabzhenii i vodoot-vedenii» [Federal law of the Russian Federation from 17.12.2011 ¹ 416-FZ “On Water Supply and Sanitation”]. Konsul'tantPlyus. Available at: http://www.consultant.ru. Date of access: 24.03.2013.
- Khramenkov S.V. Strategiya modernizatsii vodoprovodnoy seti [The Strategy of Water Supply Networks Modernization]. Moscow, Stroyizdat Publ., 2005, 398 p.
- Kuliczkowski A. Rury Kanalizacyjne. Wydawnictwo Politechniki Swietokrzyskiej, Kielce, 2004, 507 p.
- Zwierzchowska A. Technologie bezwykopowej budowy sieci gazowych, wodociagowych i kanalizacyjnych. Politechnika swietokrzyska. Kielce, 2006, 180 p.
- Gal'perin E.M. Opredelenie nadezhnosti funktsionirovaniya kol'tsevoy vodoprovodnoy seti [Determining the Reliability of Water Ring Mains Operation]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 1999, no. 6, pp. 13—16.
- Kuliczkowski A., Kuliczkowska E., Zwierzchowska A. Technologie beswykopowe w inzeynierii srodowiska. Wydawnictwo Seidel-Przywecki Sp. Kielce, 2010, 735 p.
- Metodika opredeleniya potentsiala energosberezheniya i perechnya tipovykh meropriyatiy po energosberezheniyu i povysheniyu energeticheskoy effektivnosti [Methods of Determining the Energy Saving Potential and the List of Standard Measures on Energy Saving and Energy Efficiency]. Saint-Petersburg, SRO NP «Tri E» Publ., 2011, 76 p.
- Rameil M. Handbook of Pipe Bursting Practice. Vulkan verlag, Essen, 2007, 351 p.
- Orlov V.A., Kashkina E.A. Tekhnologiya Swagelining. Opyt vosstanovleniya napornogo chugunnogo truboprovoda s ispol'zovaniem bestransheynogo metoda [Technology Swagelining. Experience of Pressure Recovery of Cast Iron Pipes with the Use of Trenchless Method]. Tekhnologii Mira [Technologies of the World]. 2011, no. 9, pp. 13—14.
- Govindan Sh., Val'ski T., Kuk D. Resheniya Bentley Systems: gidravlicheskie modeli. Pomogaya prinimat' luchshie resheniya [Decisions of Bentley Systems: Hydraulic Models. Helping to Make Better Decisions]. SAPR i grafika [CAD and Graphics]. 2009, no. 4, pp. 36—38.
- Borisov D.A. Bentley Systems — modelirovanie i ekspluatatsiya naruzhnykh setey vodosnabzheniya i kanalizatsii [Bentley Systems — Modeling and Operation of External Networks of Water Supply and Sewerage]. SAPR i grafika [CAD and Graphics]. 2009, no. 5, pp. 64—68.
-
Orlov Vladimir Aleksandrovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, Professor, Head of the Department of Water Supply and Waste Water Treatment, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Bogomolova Irina Olegovna -
Moscow State University of Civil Engineering (MGSU)
Assistant, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Gureeva Irina Sergeevna -
Moscow State University of Civil Engineering (MGSU)
student, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-36-29;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The authors present an analysis of effective methods of trenchless renovation of worn-out pipelines for water supply and wastewater disposal systems by means of prior destruction and dragging the new polymer pipes in the free space. The analysis of the devices for the destruction of the pipeline by trenchless methods, which include the pneumatic hammers, the wideners, petal cutters of various designs, is given. The article describes the conditions for application of different types of devices for destruction of pipelines, in particular, the range of destructible diameters and ROP. A fundamental condition for the effective work on the destruction of old pipes and dragging polymer and other pipes is the correct selection of conical reamers (their length and material, the angle of approach, the presence and number of cutting blades of a certain form, blades, etc.). Depending on the type of pipe (the strength of the wall) can be used to smooth the lead-in part of extenders or equipped with cutting lengthwise or roller blades. Tips-chopping knives, regardless of their design differences act like a can opener, slitting line into two or more parts and then pressing them into the surrounding soil and ensuring the free passage of the new extender conical pipes. The average speed of movement with destructive tip is about 80 m/h. A speed reduction is observed only when passing through the tip of the screw connections of the pipes. The work on restoration of old pipe sections shall be conducted in accordance with technological regulations, including preparations, which include inspection, skipping rope, winch procleaning, etc.), the main (construction) and final (dismantling) work that are associated with all stages of the process of the destructing the old and dragging a new pipeline. Particular attention is paid to foreign experience of trenchless renovation for steel pipes with couplings roller blades. The authors present the characteristics of renovation, approaches to the destruction of the old pipeline, in particular, the tests to assess the effectiveness of cutting pipe cutting devices. The technical process indicators are offered.
DOI: 10.22227/1997-0935.2014.7.101-109
References
- Khramenkov S.V. Strategiya modernizatsii vodoprovodnoy seti [Strategy of Modernization of Water Supply Networks]. Moscow, Stroyizdat Publ., 2005, 398 p.
- Khramenkov S.V., Primin O.G., Otstavnov A.A. Ispol'zovanie polietilenovykh trub dlya sistem vodosnabzheniya i vodootvedeniya [Use of Polyethylene Pipes for Water Supply and Sanitation]. Moscow, Sovremennaya poligrafiya Publ., 2010, 318 p.
- Rybakov A.P. Osnovy bestransheynykh tekhnologiy [Basics of Trenchless Technologies]. Moscow, PressByuro Publ., 2005, 304 p.
- Khramenkov S.V., Orlov V.A., Khar'kin V.A. Optimizatsiya vosstanovleniya vodootvodyashchikh setey [Optimization of Gravity Networks Restoration]. Moscow, Stroyizdat Publ., 2002, 160 p.
- Kuliczkowski A., Kuliczkowska E., Zwierzchowska A. Technologie beswykopowe w inzeynierii srodowiska. Wydawnictwo Seidel-Przywecki Sp., 2010, 735 p.
- Otstavnov A.A., Orlov E.V., Khantaev I.S. Pervoocherednost' vosstanovleniya truboprovodov vodosnabzheniya i vodootvedeniya [Priority Order of pipeline rehabilitation of water supply and sewerage]. Stroitel'nyy inzhiniring [Journal of Construction Engineering]. 2007, no. 10, pp. 44—49.
- Zwierzchowska A. Technologie bezwykopowej budowy sieci gazowych, wodociagowych i kanalizacyjnych. Politechnika swietokrzyska. 2006, 180 p.
- Rameil M. Handbook of Pipe Bursting Practice. Vulkan verlag, 2007, 351 p.
- Otstavnov A.A. Sovremennye materialy i tekhnologii dlya realizatsii zadach reformy ZhKKh [Modern Materials and Technologies to Achieve the Objectives of Housing Reform]. Santekhnika [Journal of Plumbing]. 2004, no. 4, pp. 2—4.
- Goncharenko D.F., Korin'ko I.V. Remont i vosstanovlenie kanalizatsionnykh setey [Repairs and Reconstruction of Sewage Systems]. Khar'kov, Rubikon Publ., 1999, 364 p.
- Beloborodov V.N., Li A.N., Emelin V.I. Otechestvennye bestransheynye tekhnologii vosstanovleniya truboprovodov [Native Trenchless Technologies of Pipeline Reconstruction]. Krasnoyarsk, SFU Publ., 2010, 192 p.
- Baklashov I.V., Kartoziya B.A. Mekhanika podzemnykh sooruzheniy i konstruktsii krepey [Mechanical Design of Underground Structures and Shoring]. Moscow, Nedra Publ., 1992, 257 p.
- Khar'kin V.A. Sistematizatsiya i analiz patologiy vodootvodyashchikh setey, podlezhashchikh vosstanovleniyu [Systematization and Analysis of Drainage Networks Pathologies to be Restored]. ROBT [Russian Association on Trenchless Technologies Implementation]. 2001, no. 2, pp. 13—25.
- Zwierzchowska A. Optymalizacja doboru metod bezwykopowej budowy. Politechnika swietokrzyska. 2003, pp. 16—19.
- Brahler C. City of Helena. California Rutherford 12-inch Diameter Water Pipeline Rehabilitation. Sydney, Australia, NO-DIG, 2013. Available at: http://www.norcalpug.com/nu_upload/Paper_1.pdf. Date of access: 20.12.2013.
-
Orlov Vladimir Aleksandrovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, Professor, Head of the Department of Water Supply and Waste Water Treatment, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Zotkin Sergey Petrovich -
Moscow State University of Civil Engineering (MGSU)
Candidate of Technical Sciences, Professor, Department of Informatics and Applied Mathematics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Khrenov Konstantin Evgen’evich -
Moscow State University of Civil Engineering (MGSU)
postgraduate student, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-36-29;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Dezhina Irina Sergeevna -
Moscow State University of Civil Engineering (MGSU)
Master student, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-36-29;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Bogomolova Irina Olegovna -
Moscow State University of Civil Engineering (MGSU)
Assistant, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The authors present an analysis of various types of internal protective pipeline coatings to ensure the strength and hydraulic characteristics of a remodeled pipeline and related coating methods for effective trenchless renovation of engineering systems, water supply systems and sanitation. As protective coating the authors considered a round profile tube of a smaller diameter than of the old pipe, close to the old pipe, sprayed lining on the basis of inorganic and inorganic materials. The article analyzes the methods of trenchless renovation for applying protective coatings: routing in the old pipeline of new pipes made of polymeric materials or polymeric sleeves, centrifugal spraying on the inner surface of pipelines’ inorganic and organic protective coatings. Special attention was paid to bag technology, providing the required strength properties at specific values of the modulus of elasticity and a number of external factors such as the depth of the existing pipe, the existence and magnitude of the horizon groundwater over it. Also attention is paid to the application technology of tape coatings ribbed profile on the inner surface of pipelines. This technology has a unique feature, which is the ability of recoverable pipeline functioning during its renovation by winding an endless belt and the formation of a new pipe. The tape coating winding is carried out by different types of spiral winding machines. The thickness of the protective coating layer forming the tube remains minimal. Inorganic cement-sand and organic coatings were considered as alternative options for repair of pipelines, which allow to localize the defects in the form of a fistula, minor cracks and other damages. However it is noted that a cement-sandy covering is inferior to organic, because it does not provide the strength characteristics of the pipeline system. The main advantage of the organic coating is mudding fistula of a large diameter, making a high wear-resisting pipe, ensuring a smooth surface. Then the protective coating almost merges with the old pipeline. The conclusion is made on the necessity of taking account of the potential for energy saving in case of various protective coatings and implemented trenchless technologies application.
DOI: 10.22227/1997-0935.2015.1.74-82
References
- Alekseev M.I., Ermolin Yu.A. Ispol’zovanie otsenki nadezhnosti stareyushchikh kanalizatsionnykh setey pri ikh rekonstruktsii [Use of Reliability Estimation of on Aging Sewer Networks During Their Reconstruction]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2004, no. 6, pp. 21—23. (In Russian)
- Dobromyslov A.Ya. Problema dolgovechnosti i nadezhnosti truboprovodnykh sistem [The Problem of Durability and Reliability of Pipeline Systems]. Santekhnika [Sanitary Engineering]. 2003, no. 5, pp. 2—4. (In Russian)
- Orlov V.A. Laboratornyy praktikum po rekonstruktsii i vosstanovleniyu inzhenernykh setey [Laboratory Workshop on Reconstruction and Rehabilitation of Engineering Networks]. Moscow, ASV Publ., 2004, 120 p. (In Russian)
- Otstavnov A.A. Sovremennye materialy i tekhnologii dlya realizatsii zadach reformy ZhKKh [Modern Materials and Technologies to Achieve the Objectives of the Housing Reform]. Santekhnika [Sanitary Engineering]. 2004, no. 4, pp. 2—4. (In Russian)
- Khramenkov S.V., Primin O.G., Orlov V.A., Otstavnov A.A. Reglament ispol’zovaniya polietilenovykh trub dlya rekonstruktsii setey vodosnabzheniya i vodootvedeniya [Regulations on the Use of Polyethylene Pipes for Reconstruction of Water Supply and Sanitation Systems]. Moscow, Miklosh Publ., 2007, 129 p. (In Russian)
- Khantaev I.S., Orlov E.V. Truby dlya realizatsii bestransheynykh tekhnologiy protyagivaniya i prodavlivaniya [Pipes for Trenchless Technologies of Pulling and Driving]. Zarubezhnyy i otechestvennyy opyt v stroitel’stve [Foreign and Native Experience in Construction]. 2007, no. 2, pp. 75—86. (In Russian)
- Otstavnov A.A., Orlov E.V., Khantaev I.S. Pervoocherednost’ vosstanovleniya truboprovodov vodosnabzheniya i vodootvedeniya [Priority of Recovering Water Supply and Sanitation Pipelines]. Stroitel’nyy inzhiniring [Construction Engineering]. 2007, no. 10, pp. 44—49. (In Russian)
- Zwierzchowska A. Technologie bezwykopowej budowy sieci gazowych, wodociagowych i kanalizacyjnych. Politechnika swietokrzyska. 2006, 180 p.
- Frassinelli A., Furlani B. Trenchless Pipeline Removal (TPR). NO-DIG 2013. Sydney, Australia, 1—4 September 2013. Available at: http://toc.proceedings.com/22211webtoc.pdf. Date of access: 19.11.2013.
- Rameil M. Handbook Of Pipe Bursting Practice. Vulkan Verlag, 2007, 351 p.
- Brahler C. City of Helena. California Rutherford 12-inch Diameter Water Pipeline Rehabilitation. NO-DIG 2013. Sydney, Australia, 1—4 September 2013. Available at: http://toc.proceedings.com/22211webtoc.pdf. Date of access: 19.11.2013.
- Khar’kin V.A. K voprosu vybora trub iz polietilenov razlichnykh klassov dlya bestransheynoy zameny vetkhikh napornykh i samotechnykh truboprovodov [To the Question of Choosing Pipes Made of PE of Different Classes for Trenchless Replacement of the Old Pressure and Gravity Pipelines]. Santekhnika [Sanitary Engineering]. 2003, no. 5, pp. 34—38. (In Russian)
- Orlov V.A., Shlychkov D.I., Koblova E.V. Sravnenie metodov bestransheynoy renovatsii truboprovodnykh sistem v sfere energosberezheniya [Comparing the Methods of Trenchless Renovation of Pipeline Systems in the Field of Energy Saving]. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii pamyati akademika RAN S.V. Yakovleva [Materials of the International Science and Practice Conference Dedicated to the Member of RAS S.V. Yakovlev]. Moscow, MGAKKhiS Publ., 2011, pp. 256—263. (In Russian)
- Zwierzchowska A. Optymalizacja doboru metod bezwykopowej budowy. Politechnika swietokrzyska. 2003, 160 p.
- Otstavnov A.A., Khantaev I.S., Orlov E.V. K vyboru trub dlya bestransheynogo ustroystva truboprovodov vodosnabzheniya i vodootvedeniya [Selection of Pipes for Trenchless Arrangement of Water Supply and Sanitation Pipelines]. Plasticheskie massy [Journal of Plastic Masses]. 2007, pp. 40—43. (In Russian)
- Khar’kin V.A. Sistematizatsiya i analiz patologiy vodootvodyashchikh setey, podlezhashchikh vosstanovleniyu [Systematization and Analysis of the Pathologies of Drainage Networks to be Restored]. ROBT [Russian Society on Implementation of Trenchless Technologies]. 2001, no. 2, pp. 13—25. (In Russian)
- Kuliczkowski A., Kuliczkowska E., Zwierzchowska A. Technologie beswykopowe w inzeynierii srodowiska. Wydawnictwo Seidel-Przywecki Sp. 2010, 735 p.
- Ishmuratov R.R., Stepanov V.D., Orlov V.A. Opyt primeneniya bestransheynoy spiral’no-navivochnoy tekhnologii vosstanovleniya truboprovodov na ob”ektakh Moskvy [Experience of the Use of Trenchless Spiral-Winding Technology of Piping Recovery on the Objects of Moscow]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2013, no. 6, pp. 27—32. (In Russian)
- Khar’kin V.A. Gidravlicheskie osobennosti kanalizatsionnykh setey s uchastkami iz polimernykh trub, ulozhennykh bestransheyno vzamen vetkhikh truboprovodov iz traditsionnykh trub [Hydraulic Characteristics of Sewer Networks with Areas of Plastic Pipes Laid Trenchless Instead of the Old Pipelines of Traditional Pipes]. Santekhnika [Sanitary Engineering]. 2003, no. 4, pp. 30—35. (In Russian)
- Orlov V.A., Zotkin S.P., Khar’kin V.A. Vybor optimal’nogo metoda bestransheynogo vosstanovleniya beznapornykh truboprovodov [Choosing the Optimal Method of Trenchless Reconstruction of Gravity Pipeline]. ROBT [Russian Society on Implementation of Trenchless Technologies]. 2001, no. 4, pp. 30—34. (In Russian)
- Orlov E.V., Salomeev V.P., Kruglova I.S. Otsenka ostatochnogo resursa napornykh stal’nykh truboprovodov sistem vodosnabzheniya i vodootvedeniya [Residual Life Assessment of Pressure Steel Pipelines for Water Supply and Sanitation Systems]. Problemy razvitiya transportnykh i inzhenernykh kommunikatsiy [Issues of the Development of Transport and Engineering Services]. 2005. no. 3—4, pp. 25—31. (In Russian)
- Orlov V.A., Averkeev I.A. Analiz avtomatizirovannykh programm rascheta vodoprovodnykh setey v tselyakh gidravlicheskogo modelirovaniya pri renovatsii truboprovodov [Analysis of CAD Software Designated for Analysis of Water Supply Systems for the Purpose of Hydraulic Modeling Designated for Renovation of Pipelines]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 3, pp. 237—243. (In Russian)
- Averkeev I.A., Orlov E.V. Proverennaya nadezhnost’: Issledovanie prochnostnykh vozmozhnostey zashchitnogo pokrytiya vodoprovodnykh trub v period ikh renovatsii [Proved Reliability: Investigation of Strength Characteristics of Protective Coating of Pipelines during their Renovation]. Voda Magazine [Water Magazine]. 2013, no. 5 (69), pp. 46—47. (In Russian)
- Nazdrachev I.Yu., Orlov E.V. Tekhniko-ekonomicheskoe sravnenie variantov proektirovaniya remonta truboprovodov sistem vodosnabzheniya [Technical and Economic Comparison of Repair Design Options of Water Piping Systems]. Problemy razvitiya transportnykh i inzhenernykh kommunikatsiy [Issues of the Development of Transport and Engineering Services]. 2007, no. 3—4, pp. 28—39. (In Russian)
- Otstavnov A.A., Ustyugov V.A., Dmitriev A.N. K voprosu minimizatsii zatrat na ustroystvo i ekspluatatsiyu podzemnykh vodoprovodov [On Minimization of the Cost of Installation and Operation of Underground Water Pipes]. Santekhnika [Sanitary Engineering]. 2006, no. 9, pp. 38—43. (In Russian)