Error
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering

ARCHITECTURE AND URBAN DEVELOPMENT. RESTRUCTURING AND RESTORATION

EXPERT ANALYSIS APPROACH TO THE SITING OF MINING ENTERPRISES (EXEMPLIFIED BY KLEN GOLD AND SILVER DEPOSIT)

Vestnik MGSU 1/2013
  • Bryukhan Fedor Fedorovich - Moscow State University of Civil Engineering (MGSU) +7 (495) 922-83-19, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Lebedev Viktor Vadimovich - OOO Regional’naya Gornorudnaya Kompaniya Project Manager, OOO Regional’naya Gornorudnaya Kompaniya, Building 1, 4 Sadovnicheskaya St., Moscow, 115035, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 47-58

Any selection of sites to accommodate mining enterprises (ME) shall inflict a minimal damage to the environment and humans. Consideration of environmental effects caused by various factors of anthropogenic impacts and development of environmental protection plans involve the assessment of their significance.The authors explain the methodology of substantiation of optimal siting of mining enterprises exemplified by Klen gold and silver deposit in Bilibin region of Chukot Autonomous District. Ranking of impacts produced by various factors serves as the basis for the procedure of the site selection. SWOT analysis of these factors must be completed. The factors of pollution and violation of the geological environment, pollution of surface waters and the water intake, atmospheric pollution, impacts produced on flora and fauna, and physical effects are discussed.A ranking pattern must be customized for each mining enterprise due to the wide variety of features that mining enterprises demonstrate (production patterns and technologies, master plans, natural and anthropogenic conditions).

DOI: 10.22227/1997-0935.2013.1.47-58

References
  1. Bryukhan' A.F., Bryukhan' F.F., Potapov A.D. Inzhenerno-ekologicheskie izyskaniya dlya stroitel'stva teplovykh elektrostantsiy [Engineering and Ecological Surveying for Construction of Thermal Power Plants]. Moscow, ASV Publ., 2010, 192 p.
  2. Bryukhan' F.F., Lebedev V.V. Otsenka khimicheskogo zagryazneniya pochv, gruntov i donnykh otlozheniy na zoloto-serebryanom mestorozhdenii «Klen» [Assessment of the Chemical Pollution of Soils, Ground and Bottom Sediments at Klen Gold and Silver Deposit]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 5, pp. 150—155.
  3. Lebedev V.V. Skhema ranzhirovaniya faktorov tekhnogennogo vozdeystviya gornorudnykh predpriyatiy na okruzhayushchuyu sredu i cheloveka [Pattern of Ranking of Factors of Anthropogenic Impacts Produced by Mining Enterprises on the Environment and Humans]. Vestnik MGOU. Ser. «Estestvennye nauki» [Proceedings of Moscow State Open University. Natural Sciences Series]. 2012, no. 4, pp. 110—117.
  4. SNiP 11-01—95. Instruktsiya o poryadke razrabotki, soglasovaniya, utverzhdeniya i sostave proektnoy dokumentatsii na stroitel'stvo predpriyatiy, zdaniy i sooruzheniy. [Instructions for the Procedure of Development, Coordination, Approval and Composition of the Project Documentation Package Required for the Construction of Enterprises, Buildings and Structures]. Moscow, Ministry of Construction of the Russian Federation, 1995, 17 p.
  5. SNiP 11-02—96. Inzhenernye izyskaniya dlya stroitel'stva. Osnovnye polozheniya. [Construction Norms and Rules 11-02—96. Engineering Surveys for Construction Purposes. Basic Provisions]. Moscow, Ministry of Construction of the Russian Federation, 1997, 44 p.
  6. SP 11-102—97. Inzhenerno-ekologicheskie izyskaniya dlya stroitel'stva [Construction Rules 11-102—97. Engineering and Environmental Surveys for Construction Purposes]. Moscow, PNIIIS Publ., 1997, 41 p.
  7. Dibb S., Simkin L. The Market Segmentation Workbook: Target Marketing for Marketing Managers. London, Cengage Learning EMEA, 1996, 219 p.

Download

RESIDENTIAL ARCHITECTURE OF YEREVAN IN THE 20TH CENTURY. MAIN STAGES OF DEVELOPMENT OF THE PROCESS OF YARD PUBLIC SPACE ORGANIZATION

Vestnik MGSU 3/2018 Volume 13
  • Azatyan Karen Rubenovich - National University of Architecture and Construction of Armenia (NUACA) Candidate of Architecture, Associate Professor, Department of Architectural Drafting and Architectural Environment Design, National University of Architecture and Construction of Armenia (NUACA), 105 Teryan str., Yerevan, 0009, Armenia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 301-308

Subject: for many centuries the yard was the social centre of residential development. However, the problems of its spatial organization often do not receive appropriate attention in modern cities. The city of Yerevan, in this sense, is also not an exception, where the new socio-economic conditions that emerged in the early 1990s led to radical changes in the residential development organization. Under this impact, a serious transformation has also been made to the yard space, which is the subject of this study. Research objectives: identification of the main stages of the yard space evolution in the residential building development of Yerevan in the 20th century and the revelation of its characteristic features. Materials and methods: the work is carried out on the basis of observations and published sources by the method of theoretical research, analysis and generalization of the material. Results: the work is composed of the following thematic subdivisions: the yard in the structure of traditional housing (in residential buildings of the 19th and early 20th centuries); development of the yard space in the new format of perimeter-quarter development (in the system of perimeter development of streets in the 1920-1950s); problems of yard organization in open compositions of building development (in the new forms of free building development by standardized elements in 1960s); attempts of yard restoration in the systematized compositions of building development (in the process of formation of large complexes of building development in 1970-1980s); loss of the yard space in contemporary conditions (in the residential building development formed since 1990s in the new socio-economic conditions). Conclusions: based on the results of the analysis, classification of the main stages of the yard space organization evolution during the last century is presented. This classification must be included in the process of the general study of development of residential architecture of Yerevan in the 20th century.

DOI: 10.22227/1997-0935.2018.3.301-308

Download

FORMATION OF BUILDING AND TRANSPORT COMMUNICATIONS IN AREAS, ADJACENT TO CITY EMBANKMENTS

Vestnik MGSU 9/2017 Volume 12
  • Storchak Yuriy Anatolyevich - Global Media Group e (GMGe) , Global Media Group e (GMGe), 3 Lesi Ukrainki blvd., 01023, Kiev, Ukraine.

Pages 1039-1052

Issues of town-planning development of coastal territories and planning of their transport framework are considered. Town-planning ideology is largely based on typologies of various engineering-planning and architectural-design solutions of artificial elements urbanizing the space, strategically realizing the priority of preserving a natural environment favorable for living, comfort, sanitary and hygienic well-being, security, optimal organization and efficiency of transport infrastructure functioning. Subject: city embankments in the context of buildings adjacent to them. Goals: to define conceptual approaches and identify mechanisms of town-planning analysis of transport service in coastal territories. Materials and methods: scientific research was based on contextual, theoretical, empirical and practical analysis of city embankments. Results: the concepts and classification of city embankments created on the basis of projects implemented in different countries are presented. Conclusions: On the basis of these data it is possible to form comprehensive and specialized strategies for development of territories based on the need to formulate and solve various scientific and practical goals and tasks.

DOI: 10.22227/1997-0935.2017.9.1039-1052

Download

RESIDENTIAL ARCHITECTURE OF YEREVAN IN 20TH CENTURY: MULTIFUNCTIONALITY IN THE STRUCTURE OF RESIDENTIAL BUILDINGS OF THE FIRST HALF OF THE CENTURY

Vestnik MGSU 9/2017 Volume 12
  • Azatyan Karen Rubenovich - National University of Architecture and Construction of Armenia (NUACA) Candidate of Architecture, Associate Professor, Department of Architectural Drafting and Architectural Environment Design, National University of Architecture and Construction of Armenia (NUACA), 105 Teryan str., Yerevan, 0009, Armenia.

Pages 962-970

Subject: The buildings of the residential architecture of Yerevan of the 20th century make up not only a significant part of the city's housing stock but they are also the main components of the city’s image. Consequently, the study of architecture of these structures is important for solving the problems of city-building both in the present and in the future. In this context, a special place is occupied by residential architecture of the first half of the century one of the main features of which - the multifunctional structure - is the subject of this study. Research objectives: The goal of the study is to identify the features of the multifunctionality factor influence on the architecture of Yerevan's residential buildings of the first half of the 20th century. Materials and methods: The work was carried out on the basis of observations and published sources by the method of theoretical study, analysis and generalization of the material. Results: This work is composed of the following thematic units: the multi-use architecture and housing (i.e., the dwelling in the process of historical development of multi-use architecture); multifunctionality in the structure of the first multi-apartment houses of Yerevan (multi-use structure of apartment-houses of Yerevan in the 19th century); formation of the city’s multifunctional structure and the housing’s architecture (appearance of the city’s functionally integrated structure, formation of perimeter style of city-building, spatial organization of public services and their impact on the architecture of residential buildings of the first half of the 20th century); examples of multi-use residential buildings (some specific examples). Conclusions: The features of residential buildings caused by the multifunctionality of their architecture are identified as a result of the analysis and the key points of the results of the generalizing study are presented. These conclusions should be included in the process of general study of development of the residential architecture of Yerevan in the 20th century.

DOI: 10.22227/1997-0935.2017.9.962-970

Download

Principles of managing ecologically safe architectural reconstruction of the territories affected by waste disposal of different genesis

Vestnik MGSU 7/2014
  • Potapov Aleksandr Dmitrievich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Head, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Vorontsov Evgeniy Anatol'evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Tupitsyna Ol'ga Vladimirovna - Samara State Technical University (SSTU) Candidate of Technical Sciences, Docent, Associate Professor, Department of Chemical Technologies and Industrial Ecology, Samara State Technical University (SSTU), 244 Molodogvardeiskay str., Samara, 443100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sukhonosova Anna Nikolaevna - Samara State Technical University (SSTU) Candidate of Technical Sciences, Senior Lecturer, Department of Chemical Technologies and Industrial Ecology, Samara State Technical University (SSTU), 244 Molodogvardeiskay str., Samara, 443100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Savel'ev Aleksey Aleksandrovich - Samara State Technical University (SSTU) postgraduate student, Department of Chemical Technologies and Industrial Ecology, Samara State Technical University (SSTU), 244 Molodogvardeiskay str., Samara, 443100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Grishin Boris Mikhaylovich - Penza State University of Architecture and Construction (PSUAC) Doctor of Technical Sciences, Professor, Chair, Department of Water Supply, Water Disposal and Hydrotechnics, Penza State University of Architecture and Construction (PSUAC), 28 Germana Titova str., Penza, 440028, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Chertes Konstantin L'vovich - Samara State Technical University (SSTU) Doctor of Technical Sciences, Professor, Department of Chemical Technologies and Industrial Ecology, Samara State Technical University (SSTU), 244 Molodogvardeiskay str., Samara, 443100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 110-132

Russia as well as the majority of the countries of the world is a highly urbanized country (according to expert opinion 70 % of the country population are citizens). The situation is worsening by the fact that in Russia, as well as in the majority of European countries, USA and Canada, great territories not occupied with agriculture are almost fully littered with industrial and consumer waste - including from solid municipal waste to highly toxic and radioactive. Generally about 9 bln tones of waste are accumulated in Russia, which includes 1.5 bln tones of dangerous waste. Basing on the analysis of more than 100 waste disposal objects in Samara region the authors showed that within its boundaries 17 landfills are situated, which after deactivation are potentially suitable as donors of recultivation materials: secondary mineral soils and soil substitutes. Moreover the separate remediated territories of can serve as sets for constructing waste neutralization complexes. The ideas presented in this work were used for estimating the state and justifying the methods of landfill recultivation in Zhigulevsk (Samara region).

DOI: 10.22227/1997-0935.2014.7.110-132

References
  1. Vaysman Ya.I., Korotaev V.N., Petrov Yu.V. Poligony deponirovaniya tverdykh bytovykh otkhodov [Landfills of Municipal Solid Waste]. Perm, PGTU Publ., 2001, 150 p.
  2. Forcano E. La meva Barcelona. Barcelona — Madrid, lunwerg, 2010, 96 p.
  3. Abercrombie P. Town and Country Planning. Rev. by D. Rigby Childs. 3-d ed. NY, Oxford University Press, 1959 (Reprinted 1961 and 1967), 256 p.
  4. Vik E.A., Bardos P. Remediation of Contaminated Land Technology Implementation in Europe: A report from the Contaminated Land Rehabilitation Network for Environmental Technologies. CLARINET, 2002, 188 p. Available at: http://www.commonforum.eu/Documents/DOC/Clarinet/WG7_Final_Report.pdf\. Date of access 19.06.2014.
  5. Yazhlev I.K. Ekologicheskoe ozdorovlenie zagryaznennykh proizvodstvennykh i gorodskikh territoriy: monografiya [Ecological Remediation of the Polluted Industrial and Urban Territories. Monograph]. Moscow, ASV Publ., 2012, 272 p.
  6. Smetanin V.I. Rekul'tivatsiya i obustroystvo narushennykh zemel' [Recultivation and Development of Disordered Areas]. Moscow, Kolos Publ., 2000, 96 p.
  7. Telichenko V.I., Potapov A.D., Shcherbina E.V. Nadezhnoe i effektivnoe stroitel'stvo na tekhnogenno zagryaznennykh territoriyakh [Sustainable and Efficient Construction on Technogenic Polluted Territories]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 1997, no. 8, pp. 31—32.
  8. Shcherbina E.V. Ekologicheskaya bezopasnost' mest razmeshcheniya otkhodov s pozitsiy ustoychivosti geotekhnicheskikh sistem [Ecological Safety of Landfills in Terms of Stability of Geotechnical Systems]. Sovremennye metody proektirovaniya, tekhnicheskoy ekspluatatsii i rekonstruktsii zdaniy i sooruzheniy: sbornik trudov MGSU [Contemporary Methods of Design, Technical Operation and Reconstruction of Buildings and Structures: Collection of Works of MGSU]. Moscow, MGSU Publ., 2005, pp. 109—112.
  9. Shcherbina E.V., Alekseev A.A. Razrabotka effektivnykh prirodookhrannykh konstruktsiy i tekhnologiy na osnove geokompozitsionnykh sistem [Development of Efficient Environment-oriented Structures and Technologies Basing on Geocompositional Systems]. Nauchno-tekhnicheskie innovatsii v stroitel'stve: sbornik dokladov [Scientific and Technical Innovations in Construction: Collection of Papers]. Moscow, MGSU Publ., 2004, pp. 92—96.
  10. Potapov A.D., Pupyrev E.I., Potapov P.A. Metody lokalizatsii i obrabotki fil'trata poligonov zakhoroneniya tverdykh bytovykh otkhodov [Localization and Processing Methods for Filtrate of Municipal Solid Waste Landfills]. Moscow, ASV Publ., 2004, 167 p.
  11. Bin G., Parker P. Measuring Buildings for Sustainability: Comparing the Initial and Retrofit Ecological Foot-print of a Century Home — The REEP House. Applied Energy. 2012, vol. 93, pp. 24—32. DOI: http://dx.doi.org/10.1016/j.apenergy.2011.05.055.
  12. Fullana i Palmer P., Puig R., Bala A., Baquero G., Riba J., Raugei M. From Life Cycle Assessment to Life Cycle Management: A Case Study on Industrial Waste Management Policy Making. Journal of Industrial Ecology. 2011, vol. 15, no. 3, pp. 458—475. DOI: http://dx.doi.org/10.1111/j.1530-9290.2011.00338.x.
  13. Bykov D.E, Chertes K.L., Tupitsyna O.V. Rekul'tivatsiya massivov organo-mineral'nykh otkhodov [Recultivation of Organic Mineral Waste Soils]. Samara, SamGTU Publ., 2007, 118 p.
  14. Dudler I.V., Lyarskiy S.P., Vorontsov E.A., Shul'gin P.Yu. Kriterii neobkhodimosti, prioritety i printsipy predproektnykh inzhenerno-geologicheskikh izyskaniy [Necessity Criteria, Prioroties and Principles of Pre-design Engineering Geological Investigations]. Rol' inzhenernoy geologii i izyskaniy na predproektnykh etapakh stroitel'nogo osvoeniya territoriy: Sergeevskie chteniya [The Role of Engineering Geology and Investigations on Pre-Design Stages of Construction Development of the Territory: Sergeev Readings]. Moscow, RUDN Publ., 2012, no. 142, pp. 337—341.
  15. Vorontsov E.A. Sposob kolichestvennoy otsenki inzhenerno-geologicheskoy informatsii i primery ego ispol'zovaniya [Quantitive Estimation of Ehgineering Geological Information and Examples of its Use]. Denisovskie chteniya : sb. materialov [Denisov Readings: Collection of Works]. Moscow, MGSU Publ., 2000, vol. 1, pp. 94—105.
  16. Kostarev V.P., Vinogradova S.A. Klyuchevoy vopros sovremennykh inzhenerno-geologicheskikh izyskaniy [Key Aspect of Contemporary Engineering Geological Investigations]. Rol' inzhenernoy geologii i izyskaniy na predproektnykh etapakh stroitel'nogo osvoeniya territoriy: Sergeevskie chteniya [The Role of Engineering Geology and Investigations on Pre-Design Stages of Construction Development of the Territory: Sergeev Readings]. Moscow, RUDN Publ., 2012, no. 142, pp. 342—344.
  17. Senyushchenkova I.M., Novikova O.O. Geoekologicheskiy analiz geologicheskoy sredy neftezagryaznen-nykh territoriy ob"ektov zheleznykh dorog [Geoecological Analysis of Geoenvironment in Oil-contaminated Territories of Railway Objects]. Naukoviy v³snik NGU [Science Proceedings of Novosibirsk State University]. 2013, no. 6, pp. 98—104.
  18. Tupitsyna O.V., Chertes K.L., Mikhaylov E.V., Garnets N.A. Issledovanie massivov organomineral'nykh otkhodov pri vybore napravleniy ikh rekul'tivatsii [Investigation of Organo-Mineral Waste Soils in Case of Choosing their Recultivation Directions]. Problemy vyzhivaniya cheloveka v tekhnogennoy srede sovremennykh gorodov: sbornik trudov 21 Vserossiyskogo kongressa «Ekologiya i zdorov'e cheloveka» [Human Survival Problems in Anthropogenic Environment of Modern Cities: Collection of Works of the 21st All-Russian Congress “Ecology and Human Health”]. Samara, 2006, pp. 270—274.
  19. Tupitsyna O.V., Chertes K.L., Bykov D.E., Mikhaylov E.V. Geoekologicheskie napravleniya rekul'tivatsii neorganizovannykh ob"ektov razmeshcheniya organo-mineral'nykh otkhodov [Geoecological Directions of Recultivation of Unorganized Organo-Mineral Waste Landfill Objects]. VeystTek—2007: sbornik dokladov V Mezhdunarodnogo kongressa po upravleniyu otkhodami i prirodookhrannymi tekhnologiyami [VeystTek—2007: Collection of Works of the 5th International Congress on Waste Management and Environmental Technologies]. Moscow, 2007, pp. 173—175.
  20. Chertes K.L., Mikhaylov E.V., Tupitsyna O.V., Malinovskiy A.S. Utilizatsiya osadkov stochnykh vod na ob"ektakh razmeshcheniya otkhodov [Sewage Sludge Utilization on Landfill Facilities]. Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia]. 2008, no. 5, pp. 36—40.
  21. Tupitsyna O.V. Kompleksnaya geoekologicheskaya sistema issledovaniya i vosstanovleniya tekhnogenno narushennykh territoriy [Complex Geoecological System of Investigation and Remediation of Technogenic Disordered Territories]. Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia]. 2011, no. 3, pp. 35—38.

Download

STUDY OF MIGRATION OF TRITIUM INTO BORDER ZONES OF RADIOACTIVE WASTE REPOSITORIES THAT HAVE DIFFERENT OPERATION LIVES

Vestnik MGSU 1/2013
  • Khakhunova Mariya Mikhaylovna - Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences (RAN GEOKhI im. V.I. Vernadskogo) Candidate of Technical Sciences, Professor, Researcher, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences (RAN GEOKhI im. V.I. Vernadskogo), 4 Ko- sygina St., Moscow, 119991, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 169-176

The main objective of the research was to study the migration of tritium as the most active radio-nuclide over radioactive waste storage landfills and to project the intensity of industrial pollution of water-bearing layers. Radioactivity is a distinctive feature of tritium. On the one hand, it promotes its extensive use in small quantities in various spheres of the human activity, and on the other hand, it produces a negative impact on the environment due to its ability to accumulate in cells. The author considers the issue of distribution of radio-nuclides both in horizontal and vertical directions to prevent or to limit their release into further zones of waste storage landfills.The proposed monitoring system detects the condition of storage facilities and adjacent zones from the viewpoint of environmental security. It is based on a reliable method of monitoring of the condition of structures. The objective is to ensure the security and further safe operation of depositories. The findings have also served as the instrument of evaluation of effectiveness of implementation of the proposed technology. The methodology assures a timely warning of potential danger due to the negative impact produced by near-surface storage facilities onto the environment in connection with the migration of radio-nuclides. Moreover, extension of the operating life of existing storage facilities may involve a substantial economic effect.

DOI: 10.22227/1997-0935.2013.1.169-176

References
  1. Dmitriev S.A., Stefanovskiy S.V. Obrashchenie s radioaktivnymi otkhodami [Treatment of Radioactive Waste]. Moscow, RKhTU im. D.I. Mendeleeva Publishing Centre, 2000, 124 p.
  2. Efremov D.I. Otchet po teme: «Regional'naya pereotsenka ekspluatatsionnykh zapasov presnykh podzemnykh vod tsentral'noy chasti Moskovskogo artezianskogo basseyna (Moskovskiy region)» [Report on “Regional Revaluation of Fresh Groundwater Supplies in the Central Area of the Moscow Artesian Basin (Moscow Region)”]. FGUP «Geotsentr-Moskva» [Federal State Unitary Enterprise “Geocentre-Moscow’]. Moscow, 2002, pp. 2—52.
  3. Kochkin B.T., Patyk-Kara N.G. Geomorfologicheskaya otsenka territorii s tsel'yu vybora mest dlya mogil'nikov vysoko toksichnykh radioaktivnykh otkhodov [Geo-morphological Assessment of Territories with a View to the Siting of Highly Toxic Radioactive Waste Storage Landfills]. Geologiya rudnykh mestorozhdeniy [Geology of Ore Deposits]. 1999, no. 2, pp. 154—161.
  4. Sobolev A.I., Pol'skiy O.G., Tikhomirov V.A. Informatsionno-analiticheskaya sistema radioekologicheskogo monitoringa [Information and Analytical System of Radio-ecological Monitoring]. Moscow, Prima Publ., 1995, 125 p.
  5. Shvets V.M., Prozorov L.B. Modelirovanie vertikal'noy migratsii radionuklidov v morennykh otlozheniyakh [Simulation of Vertical Migration of Radio-nuclides in Morainic Deposits]. Moscow, RGGRU im S. Ordzhonikidze Publ., 2007, pp. 5—67.

Download

STATE POLICY FUNDAMENTALS IN FORMATION OF A NATIONAL STANDARD OF "GREEN CONSTRUCTION" FOR ASSESSMENT OF ITEMS OF REAL PROPERTY

Vestnik MGSU 12/2012
  • Kolchigin Mikhail Aleksandrovich - Moscow State University of Civil Engineering (MGSU) assistant lecturer, Department of Construction of Thermal and Nuclear Power Plants, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Benuzh Andrey Aleksandrovich - Moscow State University of Civil Engineering (MGSU) engineer, Department of Construction of Thermal and Nuclear Power Plants, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 177 - 181

The authors analyze the problem of implementation of principles of "green construction" in the Russian Federation. Despite the availability of the appropriate legislation in the field of environmental safety of construction, there are no legal, social, or economic incentives that may boost development of "green" technologies.
Until recently, fundamentals of the state policy in the field of environmental protection of real estate development have not succeeded in motivating market players to implement advanced green technologies.
However, recently, the government has begun motivating the construction industry towards the use of "green" technologies. The first activity is aimed at improving the legislation and updating the international voluntary certification according to BREAM and LEED standards.
The result is the acceptance of the National Green Building Standard for real estate valuation that will open up new opportunities and prospects to the participants of the construction market. However, at the initial phase of implementation of "Fundamentals of the State Policy in the Field of Environmental Development of the Russian Federation", government authorities should provide their support to proponents of green buildings, including financial inflows.

DOI: 10.22227/1997-0935.2012.12.177 - 181

References
  1. Obrashchenie Moskovskoy gorodskoy dumy ot 21.02.2007 ¹ 5 «O prinyatii mer po prekrashcheniyu nezakonnoy gradostroitel’noy deyatel’nosti na territoriyakh Balashikhinskogo rayona, granichashchikh s natsional’nym parkom «Losinyy ostrov» [Address of Moscow City Duma no. 5 of 21.02.2007 «Actions Banning any Illegal Urban Development Activities in Balashikha District Area Bordering “Losinyy Ostrov” National Park].
  2. Kholopova E.N., Zakharova V.A. Ekologicheskaya ekspertiza: teoriya i praktika pravoprimeneniya [Environmental Review: Theory and Practice of Law Enforcement]. Ekspert kriminalist [Forensic Expert]. 2010, no. 2, pp. 28—32.
  3. Veklenko V.V., Popov I.V. Mesto ugolovnoy otvetstvennosti v sisteme yuridicheskoy otvetstvennosti, vozlagaemoy za ekologicheskie pravonarusheniya [Position of the Criminal Liability in the System of Legal Responsibility Imposed for Environmental Offenses]. Rossiyskiy sledovatel’ [Russian Investigator]. 2007, no. 24, pp. 2—9.
  4. Braun V.K., Polyakov A.N. Ekologicheskaya premiya zastroyshchika [Environmental Bonus for Builders]. Rukovoditel’ stroitel’noy organizatsii [Construction Company Executive]. 2011, no. 1, pp. 14—20.
  5. Telichenko V.I., Potapov A.D., Slesarev M.Yu., Shcherbina E.V. Ekologicheskaya bezopasnost’ stroitel’stva [Environmental Safety of Construction]. Moscow, Arkhitektura-S Publ., 2009, 311 p.
  6. Matiyashchuk S.V. Kommentariy k Federal’nomu zakonu ot 23 noyabrya 2009 g. ¹ 261-FZ «Ob energosberezhenii i o povyshenii energeticheskoy effektivnosti i o vnesenii izmeneniy v otdel’nye zakonodatel’nye akty Rossiyskoy Federatsii» (postateynyy) [Commentary on the Federal Law no. 261-FZ of November 23, 2009 “On Energy Saving and Improvement of Energy Efficiency and on Amendments to Certain Legislative Acts of the Russian Federation” (itemized)]. Moscow, Yustitsinform Publ., 2010, 208 p.
  7. Bol’sherotov A.L. Sistemy otsenki ekologicheskoy bezopasnosti stroitel’stva [Systems of Evaluation of Environmentally Safe Construction]. Moscow, ASV Publ., 2010, 216 p.
  8. Donovan F. Our Uncertain Future: Can Good Planning Create Sustainable Communities? University of Illinois, 2009, pp. 3—7.
  9. Paul F. Downtown Ecopolis: Architecture and Cities for a Changing Climate. Springer, New York, 2009, 628 p.

Download

Measures to reduce the impact of anti-icing agents on the environment and on the work of wastewater treatment facilities

Vestnik MGSU 8/2014
  • Voronov Yuriy Viktorovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Sanitation and Water Ecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Gogina Elena Sergeevna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Water Disposal and Aquatic Ecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Deryusheva Nadezhda Leonidovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Water Disposal and Aquatic Ecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-36-29; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 107-117

This article analyses the impact of the excess of chemical agents in the snow on the environment and on the working waste water treatment facilities. The article presents some suggestions for improvement of regulatory requirements concerning design engineering of snow melting facilities in the water disposal system. This suggestion was substantiated to assess snow as waste disposed from road surface, and to register snow mass delivered to snow melting facilities in equivalent units. It is assumed that snow melting stations are facilities designed for waste treatment, and this is why the project documentation for construction of these facilities has to undergo a state expertise for Environmental Impact Assessment. Completed studies provide estimates of the receipted snow, its pollution, etc. But at the same time these studies serve as the basis for approving the necessity of developing a unified system for monitoring the city's snow-melting plants to ensure the reliability.

DOI: 10.22227/1997-0935.2014.8.107-117

References
  1. Reagent na osnove bishofita v rezul'tate testov priznan bezvrednym dlya derev'ev, zhivotnykh i obuvi moskvichey [Agent Based on Bishofite Proved Nontoxic for Trees, Animals and Footwear in Moscow]. The Moscow Government Information Center, October 29, 2012. Available at: http://icmos.ru/news/7585-v-etom-godu-vpervye-v-stolicemozhno-zapisat-rebenka-v-kruzhok-po-internetu.html. Date of access: 02.02.2014.
  2. Reglament zimney uborki proezzhey chasti magistraley, ulits, proezdov i ploshchadey (ob"ektov dorozhnogo khozyaystva g. Moskvy) s primeneniem protivogololednykh reagentov i granitnogo shchebnya fraktsii 2...5 mm (na zimnie periody s 2009—2010 i dalee) (vzamen ot 17.10.2009) (utv. Rukovoditelem Kompleksa gorodskogo khozyaystva Moskvy 20.01.2010) [Regulations of Winter Cleaning Carriageway of Highways, Streets, Roads and Areas (Road Facilities in Moscow) with the Use of Anti-icing Agents and Granite Rubble Fraction 2—5 mm (for the Winter Periods 2009—2010 and beyond) (instead of 17.10.2009)]. Available at: http://base.consultant.ru/cons/cgi/online.cgi?req=doc;base=MLAW;n=125891. Date of access: 02.02.2014.
  3. D’achkov R. Roman D'yachkov: Taktika vyzhzhennoy zemli [Roman D'yachkov: Scorched Earth Tactics]. Argumentyi i fakty [Arguments and Facts]. 2013, no. 13, p. 54. Disposed in Finland]. Avto revyu [Auto review]. 2009, no. 3—5 (422). Available at: http://trucks.autoreview.ru/archive/2009/03/finn_plow/. Date of Access: 30.01.2014.
  4. Chernyavskii M. Uborka na polnoy skorosti. Kak ubirayut sneg v Finlyandii? [Cleaning at Full Speed. How is Snow Disposed in Finland]. Avto revyu [Auto review]. 2009, no. 3—5 (422). Available at: http://trucks.autoreview.ru/archive/2009/03/finn_plow/. Date of Access: 30.01.2014.
  5. Gusev A. Bitva so snegom: mirovoy opyt [Battle with Snow: World Experience]. Birzha plyus svoy Dom [Broker’s Board Plus Own House]. 2011, no. 2, January 28. Accessible at: http://birzhaplus.ru/dom/?69394. Date of Access: 30.01.2014.
  6. Bennet E.R., Linstedt K.D., Nilsgard V., Battaglia G.M., Pontius F.W. Urban Snowmelt — Characteristics and Treatment. J. Water Pollution Control Fed. 1981, vol. 53, no. 1, pp. 119—125.
  7. Kaczor G., Bergel T. The Effect of Incidental Waters on Pollution Load in Inflows to the Sewage Treatment Plants and to the Receivers of Sewage. Przemysł Chemiczny. 2008, vol. 87, pp. 476—478.
  8. Kaczor G., Bugajsji P. Impact of Snowmelt Inflow on Temperature of Sewage Discharged to Treatment Plants. Pol. J. Environ. Stud. 2012, vol. 2, no. 2, pp. 381—386.
  9. Westra J.V., Easter K.W., Olson K.D. Targeting Nonpoint Source Pollution Control: Phosphorus in the Minnesota River Basin. Journal of the American Water Resources Association. Middleburg, April, 2002, vol. 38, no. 2, pp. 493—505.
  10. Khramenkov S.V., Pakhomov A.N., Bogomolov M.V., Danilovich D.A., Romashkin O.V., Pupyrev E.I., Koretsky V.E. Sistemy udaleniya snega s ispol'zovaniem gorodskoy kanalizatsii [Snow Disposal System Using Municipal Sewer]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 2008, no. 10, pp. 19—30.
  11. Voronov Yu.V., Deryushev L.G., Deryusheva N.L.Voprosy proektirovaniya statsionarnykh snegoplavil'nykh punktov [Problems of Engineering Design of Fixedsite Snow Melting Facilities]. Santekhnika [Sanitary Engineering]. Moscow, "AVOK PRESS" Publ., 2013, no. 2, pp. 26—29.
  12. Borisyuk N.V. Sneg, snezhnaya massa, utilizatsiya: tekhnologii utilizatsii snezhnoy massy [Snow, Snow Mass, Recycling: Utilization Technologies of Snowpack]. Stroitel'naya Tekhnika i Tekhnologii [Construction Equipment and Technologies]. 2012, no. 1, pp. 54—58.
  13. Koretsky V.E. Varianty razvitiya moshchnostey sistemy snegoudaleniya Moskvy [Options of Developing Snow Removal System in Moscow]. Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia] 2005, no. 4, pp. 8—10.
  14. Kuntseva N.K., Kartashova A.V., Chaman A.V. Normativy kachestva vody: vzglyad analitika [Water Quality Standards: Analyst’s Point of View]. Metody otsenki sootvetstviya [Journal of Conformity Assessment]. 2012, no. 3. Accessible at: http://ria-stk.ru/mos/adetail.php?ID=60547. Date of Access: 02.02.2014.

Download

GEO-ENVIRONMENTAL DUE DILIGENCE AIMED AT SELECTION OF SITES DESIGNATED FOR ACCOMMODATION OF MOBILE GAS TURBINE POWER PLANTS IN RECREATIONAL LANDS

Vestnik MGSU 5/2012
  • Bryukhan' Fedor Fedorovich - Moscow State University of Civil Engineering (MSUCE) Professor, Doctor of Technical Sciences, +7 (495) 922-83-19, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kos'kin Igor' Olegovich - Scientific and Production Association Gidrotehproekt Open Joint Stock Company Leading Engineer, Scientific and Production Association Gidrotehproekt Open Joint Stock Company, 55a Oktyabr'skaya Str., Valday City, Novgorod Region, 175400, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 143 - 149

Mobile gas turbine plants (MGTP) are the key sources of power designated to improve the safety of power supply in case of power deficit. In Russia, their pilot launch was initiated 5 - 6 years ago, and since then, they have demonstrated their high efficiency. In view of the upcoming Winter Olympic Games, organizations responsible for continuous power supply have resolved to build three MGTPs in Sochi. As Sochi is located in the natural area of preferential protection that has been granted Federal significance, construction and operation of the aforementioned facilities requires a detailed geo-environmental due diligence. Significant efforts have been exerted to substantiate the accommodation of MGTPs in three different sites and to identify the maximal number of power generators per site with account for the ecological restrictions imposed onto the natural areas of preferential protection.
The impact produced by MGTPs on the environment depends on their technological features and the appropriate natural and anthropogenic properties of their sites and adjacent lands. Therefore, selection of new sites must be backed by the assessment of negative consequences. This requirement applies mainly to recreational lands. Recent sources report that the principal factors of negative impact of MGTPs include the chemical pollution of the ambient air and the noise pollution of residential buildings located in the immediate proximity to MGTPs. Factors of secondary importance include the pollution of surface and underground waters, soils, intrusion into the geological environment, production of waste, thermal and electromagnetic pollutions.
The authors assess different factors of impact produced by MGTPs on the environment. As a result of the geo-ecological due diligence it has been discovered that the maximal number of power generators per site must not exceed 2-4, if the oxide emission technology is employed. At the same time, failure to employ the above technology must prevent any MGTPs from being installed there. Noise pollution assessments have demonstrated that acceptable noise intensity will be exceeded at the distance of up to 300 meters from the MGTP. Therefore, construction of MGTPs requires noise protection arrangements, for example, installation of specialized noise-absorbing fences or screens. It is noteworthy that soil pollution, geological environment pollution, thermal and electromagnetic pollution may be disregarded due to inconsiderable period of time while MGTPs are in operation. Adjusted calculations and assessments are to be made at the stage of the project development.

DOI: 10.22227/1997-0935.2012.5.143 - 149

References
  1. Bryukhan’ A.F., Bryukhan’ F.F., Potapov A.D. Inzhenerno-ekologicheskie izyskaniya dlya stroitel’stva teplovykh elektrostantsiy [Engineering and Ecological Surveying for Construction of Thermal Power Plants]. Moscow, ASV Publ., 2010, 192 p.
  2. Bryukhan’ A.F., Cheremikina E.A. Mobil’nye pikovye gazoturbinnye elektrostantsii i okruzhayushchaya sreda [Mobile Peak-Load Gas Turbine Power Plants and the Environment]. Moscow, Forum Publ., 2011, 128 pp.
  3. Viktor de Biasi. Mobil’naya GTU MOBILEPAC. Vyrabotka 25 MVt elektroenergii v den’ dostavki na mesto [Mobile GTU MOBILEPAC. Production of 25 MW of Electricity on the Day of Delivery onto the Location]. Gazoturbinnye tekhnologii [Gas Turbine Technologies], 2006, no. 1, pp. 26—29.
  4. OND-86. Metodika rascheta kontsentratsiy v atmosfernom vozdukhe vrednykh veshchestv, soderzhashchihsya v vybrosakh predpriyatiy [Methods of Calculating the Concentrations of Harmful Substances in Emissions of Enterprises]. Leningrad, Gidrometeoizdat Publ., 1987, 93 p.
  5. SanPiN 2.1.6.575-96. Gigienicheskie trebovaniya k okhrane atmosfernogo vozdukha naselennykh mest [Sanitary Norms and Rules. Hygienic requirements for the Protection of Atmospheric Air of Populated Areas]. Goskomsanyepidnadzor Rossii [State Committee of Russia in charge of Sanitary and Epidemiological Supervision], Moscow, 1996.
  6. SN 2.2.4/2.1.8.562-96. Shum na rabochikh mestakh, v pomeshcheniyakh zhilykh, obshchestvennykh zdaniy i na territorii zhiloy zastroyki [Sanitary Norms 2.2.4/2.1.8.562-96. Noise at Workplaces, in Residential and Public Buildings and Residential Areas]. Goskomsanyepidnadzor Rossii [State Committee of Russia in charge of Sanitary and Epidemiological Supervision], Moscow, 1996.
  7. SNiP 23-03—2003. Zashchita ot shuma [Construction Norms and Rules 23-03—2003. Noise Protection]. St.Petersburg, DEAN Publ., 2004, 74 p.
  8. Cheremikina E.A. Ranzhirovanie tipov vozdeystviy mobil’nykh pikovykh gazoturbinnykh elektrostantsiy na komponenty prirodnoy sredy po stepeni ikh znachimosti [Ranking the Types of Impacts of Peak-Load Mobile Gas Turbine Power Plants Produced on Constituents of the Environment Based on Their Significance] Sbornik dokladov 7-y Vserossiyskoy nauchno-tehnicheskoy konferentsii «Sovremennye problemy ekologii» [Proceedings of the 7th All-Russian Scientific Conference «Contemporary Problems of Ecology»]. Tula, 2010, pp. 39—41.
  9. 25 MW of Mobile Power. East Hartford (CT), Pratt & Whitney, 2010, 6 p.

Download

ASSESSMENT OF THE CHEMICAL POLLUTION OF THE SOIL, GROUND AND BOTTOM SEDIMENTS AT KLEN GOLD AND SILVER DEPOSIT

Vestnik MGSU 5/2012
  • Bryukhan' Fedor Fedorovich - Moscow State University of Civil Engineering (MSUCE) Professor, Doctor of Technical Sciences, +7 (495) 922-83-19, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Lebedev Viktor Vadimovich - Regional'naya Gornorudnaya Kompaniya Open Joint Stock Company project manager +7 (495) 777-31-04, Regional'naya Gornorudnaya Kompaniya Open Joint Stock Company, Building 1, 4 Sadovnicheskaya St., Moscow, 115035, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 150 - 155

Currently, prospecting and design-related works are performed prior to the upcoming launch of mining operations at Klen gold and silver deposit in Chukot Autonomous District. The anthropogenic impact of the geological exploration in this intact territory has been produced since 1984. A considerable amount of borehole drilling, prospecting, road building, and temporary housing development has been performed. The engineering research, including ecological surveys, has been completed to assess the ecological impact of upcoming exploratory and mining operations at the deposit. Assessment of the geochemical condition of the landscape constituents, including the soil, ground and bottom sediments is of special importance in terms of their engineering protection and rational management of the natural environment.
The above assessments were based on the field sampling made by «Sibgeoconsulting», CJSC (Krasnoyarsk) and the laboratory research made by accredited laboratories of Federal State Unitary Geological Enterprise «Urangeolograzvedka» (Irkutsk) and «Krasnoyarskgeologiya» (Krasnoyarsk). The analysis of the chemical pollution of soils, ground and bottom sediments is based on the examination of 30 samples.
Peculiarities of the chemical composition of samples extracted at the deposit were identified. It has been discovered that pH values of the soil vary from 5.1 to 7.3. The concentration of metal in bottom sediments exceeds its concentration in the soil by far. Almost all irregular features of the sample water in the whole territory of the deposit are caused by the anthropogenic impact. In general, the metal content in soils, ground and bottom sediments within the territory of the deposit is slightly different from the regular clarke.

DOI: 10.22227/1997-0935.2012.5.150 - 155

References
  1. SNiP 11-02—96. Inzhenernye izyskaniya dlya stroitel’stva. Osnovnye polozheniya [Construction Norms and Rules 11-02—96. Engineering Surveying for Construction Purposes. Basic Provisions]. Moscow, Ministry of Construction of the Russian Federation, 1997, 44 p.
  2. SP 11-102—97. Inzhenerno-ehkologicheskie izyskaniya dlya stroitel’stva [Construction Rules 11-102—97. Engineering and Environmental Surveying for Construction]. Moscow, PNIIIS [Production, Scientific and Research Institute of Engineering Surveys in Construction], 1997, 41 p.
  3. Orlov D.S., Sadovnikova L.K., Suhanova N.I. Himiya pochv [Soil Chemistry]. Moscow, Vysshaya Shkola Publ., 2005, 558 p.
  4. Bowen H.J.M. Environmental Chemistry of the Elements. New York, Academiс Press, 1979, 333 p.
  5. Bryukhan’ A.F. Indikatory tekhnogennogo zagryazneniya landshaftov promyshlennymi predpriyatiyami [Indicators of Industrial Pollution of Landscapes by Industrial Enterprises]. Proceedings of the 7th All-Russian Scientific Conference «Modern Problems of Ecology»]. Tula, 2010, pp. 3—8.

Download

PRINCIPLES, STAGES AND OBJECTIVES OF FORMATION OF INNOVATIVE DEVELOPMENT PATTERNS AT CONSTRUCTION ENTERPRISES

Vestnik MGSU 3/2012
  • Mikhaylov Valeriy Yurevich - Moscow State University of Civil Engineering (MSUCE) 8 (495) 287-49-19, ext. 3079, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337.
  • Gamuletskiy Vladimir Vladimirovich - Moscow State University of Civil Engineering (MSUCE) 8 (495) 287-49-19, ext. 3079, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russia.

Pages 171 - 175

In the article, the results of the research performed in the field of innovative development of enterprises are provided, and the main principles and the content of each stage of innovative development of construction enterprises in the new economic environment are developed on the basis of the research. Actions, proposed in the article, will ensure the implementation of the strategy of innovative development with a view to effective attainment of objectives of case management and successful adaptation of construction enterprises to altering factors of the media.

DOI: 10.22227/1997-0935.2012.3.171 - 175

References
  1. Gumba Kh.M. Effektivnoe upravlenie razvitiem innovatsionnykh protsessov na predpriyatiyakh stroitel’noy otrasli [Efficient Control over Development of Innovative Processes at Enterprises of the Construction Industry], Ìoscow, ASV Publ., 2009.
  2. B.Z. Mil’ner, edited by. Innovatsionnoe razvitie: ekonomika, intellektual’nye resursy, upravlenie znaniyami [Innovative Development: Economy, Intellectual Resources, Management of Knowledge]. Moscow, INFRA-M Publ., 2010.
  3. Boumen K. Osnovy strategicheskogo menedzhmenta [Basics of Strategic Management]. Moscow, UNITI Publ., 1997.
  4. Gamuletskiy V.V. Innovatsionnaya strategiya stroitel’nogo predpriyatiya [Innovative Strategy of a Construction Enterprise]. Collected papers, Moscow, MSUCE, 2011.

Download

ANALYSIS OF THE CONCEPT OF "GREEN" CONSTRUCTION AS A VEHICLE TO ENSURE THE ENVIRONMENTAL SAFETY OF CONSTRUCTION ACTIVITIES

Vestnik MGSU 12/2012
  • Benuzh Andrey Aleksandrovich - Moscow State University of Civil Engineering (MGSU) engineer, Department of Construction of Thermal and Nuclear Power Plants, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kolchigin Mikhail Aleksandrovich - Moscow State University of Civil Engineering (MGSU) assistant lecturer, Department of Construction of Thermal and Nuclear Power Plants, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 161 - 165

The authors demonstrate that the number of buildings in the world exceeds one billion according to the statistical data; their potential negative impact on the environment can be disastrous; moreover, the main cause of the ever-growing demand for buildings consists in the constant growth of the world population that makes the global environmental situation even more complicated.
As a main conception, the authors focus on the concept of sustainable development. They consider that the core idea of this concept is that the present-day generation should do everything in their power to preserve the natural environment and its resources for the future generations. The authors mention that back in the middle of the 20th century academician V.I. Vernadsky formulated the concept of the noosphere closely linked to the notion of sustainable development.
According to the authors, "green" construction can be considered as a vehicle for sustainable development of territories that accommodate construction sites. The authors define "green" construction as a comprehensive system of knowledge structured on the basis of design and construction standards. "Green" buildings demonstrate their high construction quality along with minimal costs and maximal comfort. Although a "green" technology is a new and not the simplest way of development, it has proven its incredible efficiency.
The major achievement of the authors consists in the classification of principles, approaches and available technologies that can be applied or are applied in the "green" construction to ensure the environmental safety of construction activities. The authors have also selected environmental, economic and social benefits of "green" construction and provided their recommendations concerning the implementation of "green" technologies in Russia.

DOI: 10.22227/1997-0935.2012.12.161 - 165

References
  1. Guarnieri Timothy J. The Real Cost of Sustainable Development. AACE International Transactions, 2008, pp. 1—7.
  2. Telichenko V.I., Potapov A.D., Slesarev M.Yu., Shcherbina E.V. Ekologicheskaya bezopasnost’ stroitel’stva [Environmental Safety of Construction]. Moscow, Arkhitektura-S Publ., 2009, 311 p.
  3. Telichenko V.I. Ot ekologicheskogo i «zelenogo» stroitel’stva — k ekologicheskoy bezopasnosti stroitel’stva [From Ecological and “Green” Construction to Environmental Safety of Construction]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering] 2011, no 2, pp. 47—51.
  4. Lockwood C. Building the Green Way. Harvard Business Publishing, 2006, pp. 129—135.
  5. Amanjeet Singh, Matt Syal, Sue C. Grady, Sinem Korkmaz. Effects of Green Buildings on Employee Health and Productivity, Am J Public Health, 2010, pp. 1665—1668.
  6. Ya. Roderick, David McEwan, Craig Wheatley, Carlos Alonso. A Comparative Study of Building Energy Performance. Building simulation, 2010, pp. 1167—1176.
  7. Alexia Nalewaik, Valerie Venters. Costs and Benefi ts of Green Building. AACE International Transactions. 2008, pp. 248—256.

Download

Risk management of the negative impacts of building materials produced of production wastes on the environmental medium

Vestnik MGSU 6/2015
  • Pugin Konstantin Georgievich - Perm National Research Polytechnic University (PNRPU) Candidate of Technical Sciences, Associate Professor, Department of Automobiles and Production Machines, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Vaysman Yakov Iosifovich - Perm National Research Polytechnic University (PNRPU) Doctor of Medical Sciences, Professor, Scientific Supervisor, Department of Environmental Protection, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 73-87

Basing on life cycle analysis of building materials produced of waste products the authors defined the formation stages of environmental risks of adverse impacts on the environment. The studies have revealed that one of the main environmental risks is the occurrence of secondary emission of pollutants from building materials produced of waste products when used by the end-user, which is not taken into account by the existing regulatory documents defining the environmental safety of construction materials. The questions of prevention of the possible negative impact of the construction materials based on or with addition of production waste while their use on the environment and population as a result of a number of natural and anthropogenic factors, which can lead to negative ecological effects, which are difficult to forecast, are not regulated enough. In the present conditions of the absence of regulatory framework of their ecological safety the wide use of production waste for obtaining construction materials without account for the possible ecological risks may lead to technogenic burden exceeding the acceptable level.The authors defined the main ways to reduce the environmental risks when using the resource potential of waste for the production of building materials by reducing the emissions of these pollutants while reducing their permeability.

DOI: 10.22227/1997-0935.2015.6.73-87

References
  1. Leont’ev L.I., Dyubanov V.G. Tekhnogennye otkhody chernoy i tsvetnoy metallurgii i problemy okruzhayushchey sredy [Technogenic Waste of Ferrous and Non-ferrous Industry and the Environmental Problems]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2011, no. 4, pp. 32—35. (In Russian)
  2. Ryabov G.G., Sukov M.V. Izdeliya dlya dorozhnogo stroitel’stva na osnove otkhodov promyshlennosti [Products for Road Construction Based on Production Waste]. Izvestiya TulGU. Seriya «Ekologiya i bezopasnost’ zhiznedeyatel’nosti» [News of Tula State University. Series: Ecology and Life Safety]. 2006, no. 8, pp. 115—118. (In Russian)
  3. Dijkstra J.J., Meeusse J.C.L., Van der Sloot H.A., Comans R.N.J. A Consistent Geochemical Modelling Approach for the Reactive Transport of Major and Trace Elements in MSWI Bottom Ash. Appl. Geochem. 2008, no. 23 (6), pp. 1544—1562. DOI: http://dx.doi.org/10.1016/j.apgeochem.2007.12.032.
  4. Eikelboom E., Ruwiel E., Goumans J.J.J.M. The Building Materials Decree: An Example of a Dutch Regulation Based on the Potential Impact of Materials on the Environment. Waste Manage. Oxford. 2001, no. 21 (3), pp. 295—302.
  5. Fthenakis V., Wang W., Kim C.H. Life Cycle Inventory Analysis of the Production of Metals Used in Photovoltaics. Renew. Sustain. Energy Rev. 2009, no. 13 (3), pp. 493—517. http://dx.doi.org/10.1016/j.rser.2007.11.012.
  6. Sokolov E.M., Kachuzin N.M., Ryabov G.G. Geoekologicheskie printsipy ispol’zovaniya vtorichnykh resursov [Geoecological Principles of Secondary Resources Use]. Tula, Grif i K° Publ., 2000, 360 p. (In Russian)
  7. Pugin K.G., Vaysman Ya.I., Yushkov B.S., Maksimovich N.G. Snizhenie ekologicheskoy nagruzki pri obrashchenii so shlakami chernoy metallurgii : monografiya [Decreasing the Ecological Impact while Using Iron Industry Slags : Monograph]. Perm, 2008, 316 p. (In Russian)
  8. Quintelas C., Rocha Z., Silva B. et al. Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from Aqueous Solutions by an E. Coli Biofilm Supported on Kaolin. Chem. Engineering J. July 2009, 149, 1-3, pp. 319—324. DOI: http://dx.doi.org/10.1016/j.cej.2008.11.025.
  9. Jackobsen H., Kristoferrsen M. Case Studies on Waste Minimization Practices in Europe/ Topic Report — European Topic Centre on Waste. European Environment Agency, February 2002, no. 2.
  10. Indicator Fact Sheet Signals 2001 — Chapter Waste. European Environmental Agency, 2001.
  11. Leont’ev L.I., Yusfin Yu.S., Chernousov P.I. Otkhody: vozdeystvie na okruzhayushchuyu sredu i puti utilizatsii [Waste: Impact on the Environment and Ways of Utilization]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2003, no. 3, pp. 32—35. (In Russian)
  12. Shapovalov D.A., Gruzdev V.S. Vliyanie tekhnogennykh vybrosov na pochvu i rastitel'nost' na primere OAO
  13. Maksimovich N.G., Blinov S.M., Men’shikova E.A. Vozdeystvie tverdykh otkhodov Chusovskogo metallurgicheskogo zavoda na sostoyanie r. Chusovoy [Influence of Solid Waste of Chusovoy Steel Works on the Condition of the River Chusovaya]. Problemy geologii Permskogo Urala i Priural’ya : Materialy regional’noy nauchnoy konferentsii [Geological Problems of Perm Ural and Cisurals]. Perm’, Permsiy universitet Publ., 1998, pp. 152—154. (In Russian)
  14. Pugin K.G. Negativnoe vozdeystvie shlakovykh otvalov chernoy metallurgii na ob”ekty okruzhayushchey sredy na primere goroda Chusovogo [Negative Impact of Iron Industry Slagheaps on Environmental Medium on an Exapmple of Chusovoy City]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territory]. 2011, no. 2, pp. 86—90. (In Russian)
  15. Pugin K.G. Voprosy ekologii ispol’zovaniya tverdykh otkhodov chernoy metallurgii v stroitel’nykh materialakh [Ecological Problems of Iron Industry Solid Waste in Construction Materials]. Stroitel’nye materialy [Construction Materials]. 2012, no. 8, pp. 54—56. (In Russian)
  16. Schwab O., Bayer P., Juraske R., Verones F., Hellweg S. Beyond the Material Grave: Life Cycle Impact Assessment of Leaching from Secondary Materials in Road and Earth Constructions. Waste Management. 2014, 34 (10), pp. 1884—1896. DOI: http://dx.doi.org/10.1016/j.wasman.2014.04.022.
  17. Mroueh U.M., Eskola P., Laine-Ylijoki J. Life-Cycle Impacts of the Use of Industrial By-Products in Road and Earth Construction. Waste Management. Oxford, 2001, 21(3), pp. 271—277. DOI: http://dx.doi.org/10.1016/S0713-2743(00)80055-0.
  18. Susset B., Grathwohl P. Leaching Standards for Mineral Recycling Materials — a Harmonized Regulatory Concept for the Upcoming German Recycling Decree. Waste Management. Oxford, 2011, 31 (2), pp. 201—214. DOI: http://dx.doi.org/10.1016/j.wasman.2010.08.017.
  19. Kozlov S.G., Vyazovikova I.V., Chernyy S.A., Krepysheva I.V. Ispol’zovanie otkhodov sodovogo proizvodstva v dorozhnom stroitel’stve [Application of Soda Production Waste in Road Construction]. Fundamental’nye issledovaniya [Fundamental Research]. 2013, no. 10—12, pp. 2604—2611. Available at: www.rae.ru/fs/?section=content&op= show_article&article_id=10002106. Date of access: 28.03.2015. (In Russian)
  20. Bhander G.S., Christensen T.H., Hauschild M.Z. EASEWASTE — Life Cycle Modeling Capabilities for Waste Management Technologies. Int. J. Life Cycle Assess. 2010, 15, pp. 403—416.
  21. Gabler H.E., Gluh K., Bahr A., Utermann J. Quantification of Vanadium Adsorption by German Soils. J. Geochem. Explor. 2009, 103 (1), pp. 37—44. DOI: http://dx.doi.org/10.1016/j.gexplo.2009.05.002.
  22. Kosson D.S., van der Sloot H.A., Sanchez F., Garrabrant A.C. An Integrated Framework for Evaluating Leaching in Waste Management and Utilization of Secondary Materials. Environ. Eng. Sci. 2002, 19 (3), pp. 159—204. DOI: http://dx.doi.org/10.1089/109287502760079188.
  23. Olsson S., Karrman E., Gustafsson J.P. Environmental Systems Analysis of the Use of Bottom Ash from Incineration of Municipal Waste for Road Construction. Resour. Conserv. Recycl. 2006, 48, pp. 26—40.

Download

Results 1 - 13 of 13