Error
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering

DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Numerical-analytical method of calculating insulated double-glazed units deflection under climatic (internal) load

Vestnik MGSU 12/2014
  • Plotnikov Aleksandr Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, senior research worker, Professor, Department of Civil and Industrial Buildings Architecture, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Stratiy Pavel Vasil’evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Assistant Lecturer, Department of Civil and Industrial Buildings Architecture, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 70-76

Glass unit consists of glasses hermetically-united together. The cavity of an insulating glass unit contains a fixed volume of air (gas). In the process of production regular air with atmospheric pressure and temperature is sealed inside a glass unit. During operation the atmospheric pressure is constantly changing, but the pressure inside remains constant (at a constant temperature). A change of temperature or of the external air pressure results in a pressure difference and therefore in a load on the glass panes. The action may exceed the usual load considerably. This pressure effects the glasses of the unit, deforms them, lowers the thermotechnical properties of glass units and can lead to their destruction. The action of the inside pressure can be seen all around as convex and concaved glasses, which destroys the architectural look of buildings. It is obvious that it is incorrect to calculate thin glass plates on such a load only by classical methods of strength of materials theory. In this case we need a special calculation method. The effects of a change in temperature, altitude or meteorological pressure are easily covered by the definition of an isochore pressure. This is necessary, to determine the change of pressure due to the temperature induced gas expansion in the cavity of the insulating glass according to the ideal gas law. After the integration of the analytical plate solution and the ideal gas law, the final pressure states can easily be calculated by coupling the change of volume and the change of pressure.

DOI: 10.22227/1997-0935.2014.12.70-76

References
  1. Feldmeier F. Internal Loads and Load Sharing of Insulating Glass Units. Stahlbau. June 2006, vol. 75, no. 6, pp. 467—478.
  2. Huveners E.M.P., Van Herwijnen F., Soetens F. Load Sharing in Insulated Double Glass Units. Heron. 2003, vol. 48, no. 2, pp. 99—122.
  3. Zhao Yie, Curcija D., Goss W.P. Convective Heat Transfer Correlations for Fenestration Glazing Cavities: A Review. ASHRAE Transactions. 1999, vol. 105, pt. 2.
  4. Zdaniya i sooruzheniya so svetoprozrachnymi fasadami i krovlyami : Teoreticheskie osnovy proektirovaniya svetoprozrachnykh konstruktsiy [Buildings and Structures with Curtain Walls and Roofs : Theoretical Bases of Translucent Structures Design]. Under the geberal editorship of I.V. Boriskina. Saint Petersburg, ITs Okonnykh sistem Publ., 2012, 400 p. (In Russian)
  5. Ensslen F. Load Bearing Performance of Weathered Laminated Safety Glass Panes. Stahlbau. August 2007, vol. 76, no. 8, pp. 582—590.
  6. Stratiy P.V., Plotnikov A.A., Boriskina I.V. Issledovanie progibov stekol paketa pri deystvii atmosfernoy sostavlyayushchey klimaticheskoy nagruzki [Investigation of Glass Deflection under the Action of Atmosphere Compound of Climatic Load]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2011, no. 4, pp. 33— 36. (In Russian)
  7. Behr R.A. Architectural Glass to Resist Seismic and Extreme Climatic Events. Woodhead Publishing Limited and CRC Press, 2009, 260 p.
  8. W?rner J.-D., Pfeiffer R., Schneider J., Shen X. Glass Structures — Basics, Design and Construction. Bautechnik. May 1998, vol. 75, no. 5, pp. 280—293.
  9. Feldmeier F. How to Handle Climatic Loads in the Design of Insulating Glass Units. Stahlbau. August 1996, vol. 65, no. 8, pp. 285—290.
  10. G?sgen J., Sedlacek G., Blank K. Mechanical Fundamentals for the Design of Structural Glass Members. Stahlbau. April 1998, vol. 67, no. 4, pp. 281—292.
  11. Buddenberg S., Beyer J., Oechsner M. Duraseal-Durability Design of Insulating Glass Units — A Status Report. Proceedings of the Challenging Glass 4 and Cost Action TU0905 Final Conference. 2014, pp. 297—304. DOI: http://dx.doi.org/10.1201/b16499-44.
  12. Penkova N., Iliev V., Neugebauer J. Thermal-mechanical Behaviour of Insulating Glass Units. Proceedings of COST Action TU0905 Mid-Term Conference on Structural Glass. 2013, pp. 295—303. DOI: http://dx.doi.org/10.1201/b14563-42.
  13. Respondek Z., Rajczyk M. Study of Glass Composite Structure Displacement Stressed by Atmospheric Factors. Advanced Materials Research. 2012, vol. 583, pp. 191—194. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.583.191.
  14. Feldmeier F. Design of Triole Insulating Glass Units. Stahlbau Issue SPEC. ISSUE. March 2011, pp. 75—80.
  15. Plotnikov A.A., Stratiy P.V. Raschet klimaticheskoy nagruzki na steklopaket na primere g. Moskvy [Calculation of Climatic Load on a Glass Unit Using the Example of Moscow]. Nauchnoe obozrenie [Scientific Review]. 2013, no. 9, pp. 190—194. (In Russian)
  16. Tibolt M., Hechler O., Odenbreit C. Analytical Extension of a Climate Load Model for Undercut Point Fitted IGU. Proceedings of the Challenging Glass 4 and Cost Action TU0905 Final Conference. 2014, pp. 199—208.
  17. Velche D., Ivanov I.V. A Finite Element for Insulating Glass Units. Proceedings of the Challenging Glass 4 and Cost Action TU0905 Final Conference. 2014, pp. 311—318. DOI: http://dx.doi.org/10.1201/b16499-46.
  18. Von Grabe J. Winter S. Contribution to the Examination of Double Glazed Units under Climate-induced Pressure Loads. Part 1: Method of Calculation. Bautechnik. July 2011, vol. 88, no. 7, pp. 425—432. DOI: http://dx.doi.org/10.1002/bate.201101483.
  19. Von Grabe J., Winter S. Contribution to the Examination of Double Glazed Units under Climate-induced Pressure Loads. Part 2: Validation. Bautechnik. August 2011, vol. 88, no. 8, pp. 507—513. DOI: http://dx.doi.org/10.1002/bate.201101494.
  20. SN 481—75. Instruktsiya po proektirovaniyu, montazhu i ekspluatatsii steklopaketov [Construction Requirements SN 481—75. Instruction on Design, Construction and Operation of Glass Units]. Moscow, Stroyizdat Publ., 1978, 20 p. (In Russian)
  21. Bohmann D. Ein numerisches Verfahren zur Berechnung von Verbundglasscheiben. Shaker Verlag Aachen, Dissertation, Schriftenreihe — Stahlbau, RWTH Aachen, Heft 43, 1999.
  22. Nikitin N.V., Travush V.I. Raschet germetichnykh steklopaketov [Calculation of Geometric Glass Units]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 1970, no. 4. (In Russian)
  23. Timoshenko S.P., Voynovskiy-Kriger S. Plastinki i obolochki [Plates and Shells]. 2nd edition. Moscow, Nauka Publ., 1966, 636 p. (In Russian)

Download

METHODOLOGICAL ASPECTS OF CLASSIFICATION OF INVESTMENT MODELS APPLICABLE TO CONSTRUCTION PROJECTS

Vestnik MGSU 3/2012
  • Yaskova Natalya Yurevna - Moscow State University of Civil Engineering (MSUCE) Doctor of Economics, Professor, Department of Economics and Management in Construction Industry, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Moskvichev Danil Vasilevich - Moscow State University of Civil Engineering (MSUCE) postgraduate student, Department of Economics and Management in Construction Industry 8 (495) 287-49-19, ext. 312, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 187 - 192

The paper covers the identification of basic investment models applicable to construction
projects. They are needed to substantiate the transformation of the investment system, to identify
the numerical values of the investment process, and to solve the problems that prevent the efficiency
improvement of the investment system. As a result of the analysis, the authors have identified
sixteen models that differ in the mode of investment, investment targets, types of investees,
investors, investment sources, investment methods, investment schemes, repayment patterns,
strategic goals, countries of origin, restrictions imposed on investment resources, payback patterns,
investment period, economic system development, financing procedure, type of investment
period alterations.
The multiplicity and variety of investment models prevent us from performing a comprehensive
comparative analysis; therefore, investment models are to be consolidated into classes that
display higher-level systemic features. As a result of comprehensive comparison of existing investment
models those models that are typical for the construction industry have been identified. They
are (1) mid-term dynamic models, and (2) target-oriented models.
Consideration of the two classes of features prevents us from preparing an exhaustive overview
of the investment process. Therefore, as a result of research of the investment system structure
its backbone element was identified. It represents an investment method that is the basic
classifier. Thus, the basic classifier of an investment model is composed of three basic classificatory
features, including the time, the investee, and the investment method. As a result, a credit
investment model, a security investment model, a cooperative investment model, a project investment
model, an economic investment model, a centralized investment model, a share investment
model, and a combined investment model were identified.

DOI: 10.22227/1997-0935.2012.3.187 - 192

References
  1. Yas’kova N.Yu. Razvitie investitsionno-stroitel’nykh protsessov v usloviyakh globalizatsii [Development of Investment and Construction Processes in the Context of Globalization]. Moscow, MAIES, U Nikitskikh vorot, 2009.
  2. Yas’kova N.Yu., edited by. Finansy i kredit v stroitel’stve [Finances and Credit in Construction Industry]. Moscow : Molodaya gvardiya, 2011.
  3. Strategiya sotsial’no-ekonomicheskogo razvitiya strany do 2020 goda [The Strategy of Social and Economiñ Development of the Country Through 2020]. Available at: www.strategy2020.rian.ru. Date of Access: 20.02.2012.
  4. Putin V.V. O nashikh ekonomicheskikh zadachakh [About Our Economic Objectives]. Available at: www.putin2012.ru. Date of access: 13.02.2012.
  5. Weber M. Methodologische Schriften. Fr / M., 1968.
  6. Federal’nyy zakon RF ¹ 39 «Ob investitsionnoy deyatel’nosti v Rossiyskoy Federatsii, osushchestvlyaemoy v forme kapital’nykh vlozheniy» ot 25.02.1999 g [Federal Law ¹ 39 On Investment Activity in the Russian Federation in the Form of Capital Investments], 25.02.1999.

Download

METHODOLOGY AND ALGORITHM OF OPTIMIZATION OF THE NEED OF SETTLEMENTS FOR TECHNICAL INSPECTION LINES FOR VEHICLES

Vestnik MGSU 6/2016
  • Kanen Mahmoud Fadlallah Hador - Ivanovo State Polytechnic University (IVGPU) postgraduate student, Department of Vehicles and Vehicle Fleet, Ivanovo State Polytechnic University (IVGPU), 20, 8 Marta str., Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Maslennikov Valeriy Aleksandrovich - Ivanovo State Polytechnic University (IVGPU) Candidate of Technical Sciences, Associate Professor, chair, Department of Vehicles and Vehicle Fleet, Ivanovo State Polytechnic University (IVGPU), 20, 8 Marta str., Ivanovo, 153037, Russian Federation.

Pages 107-117

The current methods of predicting the demand of the community for the lines of technical inspection of vehicles do not fully take into account the probabilistic and statistical nature of the complaints of car owners. This results in significant mistakes in the determination of the number of such lines, accompanied by insufficient rhythm of their operation. The design errors related to the complexity of accurate account for calendar fluctuations of the number of appeals can be partially or completely eliminated by using mathematical apparatus of the queuing theory. In this case, the complex technical system is considered as an open multi-channel queuing system with limited queue length. The received flows and serviced requests are considered to be the simplest. From a practical point of view, the replacement of one type of computational model by the other allows ensuring a more sustainable mode of calculating operations using the computer. The paper also provides a calculation expression for defining the lower and upper confidence limits of the dispersion of the average values of the number of arrivals of vehicles at the technical inspection that allows setting the interval of uncertainty for searching the optimal solution.

DOI: 10.22227/1997-0935.2016.6.107-117

References
  1. Golovin S.F. Tekhnicheskiy servis transportnykh mashin i oborudovaniya [Technical Service of Transport Vehicles and Equipment]. Moscow, Al’fa-M: INFRA-M Publ., 2008, 284 p. (In Russian)
  2. Masuev M.A. Proektirovanie predpriyatiy avtomobil’nogo transporta: uchebnoe posobie dlya studentov vysshikh uchebnykh zavedeniy [Designing of the Enterprises of Motor Transport]. Moscow, Akademiya Publ., 2007, 224 p. (In Russian)
  3. Napol’skiy G.M. Tekhnologicheskoe proektirovanie avtotransportnykh predpriyatiy i stantsiy tekhnicheskogo obsluzhivaniya [Technological Design of Transport Companies and Service Stations]. 2nd edition, revised and enlarged. Moscow, Transport Publ., 1993, 271 p. (In Russian)
  4. Kanen M.G.F., Maslennikov V.A. Povyshenie effektivnosti protsessa diagnostirovaniya avtomobiley [Improving the Efficiency of Diagnosing Process of Automobiles]. Informatsionnaya sreda VUZA : materialy XIX Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [University Infomedia. 18st International Scientific and Technical Conference]. Ivanovo, IVGPU Publ., 2012, pp. 352—354. (In Russian)
  5. Kanen M.G.F., Maslennikov V.A., Usipbaev U.A. Obosnovanie potrebnosti v liniyakh tekhnicheskogo osmotra [Rationale for Technical Inspection Lines]. Informatsionnaya sreda VUZA : materialy XXI Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [University Infomedia. 21st International Scientific and Technical Conference]. Ivanovo, IVGPU Publ., 2014, pp. 338—340. (In Russian)
  6. Kanen M.G.F., Maslennikov V.A., Usipbaev U.A., Tulenov A.T., Dzhunisbekov A.S. Opredelenie normativov potrebnosti v pukntakh tekhnicheskogo osmotra transportnykh sredstv [Defining the Standards for the Necessity in Technical Inspection Stations of Vehicles]. Auezovskie chteniya-12 : trudy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Proceedings of the International Scientific and Practical Conference “Auezov Readings-12”]. Shymkent, YuKGU im. Auezova, 2014, vol. 1. Rol’ regional’nogo universiteta v razvitii innovatsionnykh napravleniy nauki, obrazovaniya i kul’tury [The Role of Regional University in the Development of Innovative Areas of Science, Education and Culture]. Pp. 213—215. (In Russian)
  7. Kanen M.H.F., Maslennikov V.A. Obosnovanie potrebnosti naselennykh punktov v liniyakh tekhnicheskogo osmotra avtomototransportnykh sredstv [Rationale for the Necessity of Technical Inspection Lines for Motor Vehicles in Residential Areas]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2016, no. 1, pp. 161—169. (In Russian)
  8. Danko P.E., Popov A.G., Kozhevnikova T.Ya. Proektirovanie predpriyatiy avtomobil’nogo transporta [Design of Road Transport Enterprises]. Moscow, Akademiya Publ., 2007, 224 p. (In Russian)
  9. Venttsel’ E.S., Ovcharov L.A. Teoriya veroyatnostey i ee inzhenernye prilozheniya [Probability Theory and its Engineering Applications]. Moscow, Nauka Publ., 1988, 480 p. (In Russian)
  10. Taylor J.R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books; 2nd edition, 1996, 327 p.
  11. Johnson J.L., Leone F.C. Statistics and Experimental Design in Engineering and the Physical Sciences. 2nd edition. John Wiley & Sons, New York-London-Sydney-Toronto, 1977, 606 p. DOI: http://dx.doi.org/10.1002/bimj.4710200314.
  12. Kuznetsov E.S., Boldin A.P., Vlasov V.M., etc. Tekhnicheskaya ekspluatatsiya avtomobiley [Technical Maintenance of Vehicles]. 4th edition, revised and enlarged. Moscow, Nauka Publ., 2004, 534 p. (In Russian)
  13. Soldovskiy V.I. Proektirovanie proizvodstvennykh protsessov v sel’skom khozyaystve na osnove strukturno-tekhnologicheskikh skhem [Design of Production Processes in Agriculture on the Basis of Structural and Technological Schemes]. Kostroma, KGSKhA Publ., 2000, 168 p. (In Russian)
  14. Venttsel’ E.S. Issledovanie operatsiy: zadachi, printsipy, metodologiya: uchebnoe posobie [Operations Research: Objectives, Principles, Methodology. Textbook]. 3rd edition, stereotype. Moscow, Drofa Publ., 2004, 206 p. (In Russian)
  15. Romantsev V.V. Analiticheskie modeli sistem massovogo obsluzhivaniya [Analytical Models of Queuing Systems]. Saint-Petersburg, LETI Publ., 1998, 64 p. (In Russian)
  16. Chernov V.P., Ivanovskiy V.B. Matematika dlya ekonomistov [Mathematics for Economists]. In 6 volumes. Moscow, Infra-M Publ., 2000, vol. 6: Teoriya massovogo obsluzhivaniya [Queuing Theory]. 156 p. (In Russian)
  17. Samarov K.L. Elementy teorii massovogo obsluzhivaniya [Elements of Queuing Theory]. Moscow, OOO «Rezol’venta» Publ., 2009, 18 p. (In Russian)
  18. Ostreykovskiy V.A. Teoriya nadezhnosti [Reliability Theory]. Moscow, Vysshaya shkola Publ., 2003, 462 p. (In Russian)
  19. Bezrukov A.L., Groshev A.M., Kravets V.N., Orlov L.N., Savinov B.V., Tikhomirov A.N., Tikhomirova O.B. Proverka tekhnicheskogo sostoyaniya transportnykh sredstv [Technical Condition Test of Vehicles]. Nizhniy Novgorod, NP «INSAT» Publ., 2009, 398 p. (In Russian)
  20. Kuznetsov E.S. Upravlenie tekhnicheskoy ekspluatatsii avtomobiley [Management of Technical Maintenance of Cars]. Moscow, Transport Publ., 1982, 224 p. (In Russian)
  21. Rodgard Runflats. Rodgard Runflat & Polymer Solutions. Available at: http://www.rodgard.com/runflats.htm. Date of access: 07.07.2014.
  22. Curtin K.M., McCall K.H., Qiu F. Determining Optimal Police Patrol Areas with Maximal Covering and Backup Covering Location Models. Netw. Spatial Econ. 2010, vol. 10, no. 1, pp. 125—145. DOI: http://dx.doi.org/10.1007/s11067-007-9035-6.
  23. Arinin I.N., Konovalov S.I., Bazhenov Yu.V. Tekhnicheskaya ekspluatatsiya avtomobiley: Upravlenie tekhnicheskoy gotovnost’yu podvizhnogo sostava [Technical Maintenance of Cars: Management of Technical Availability of Rolling Stock]. 2nd edition. Rostov-on-Don, Feniks Publ., 2007, 314 p. (In Russian)
  24. Service station. GNU Free Documentation License. Available at: http://knowledgerush.com/encyclopedia/Service_station. Date of access: 07.08.2015.
  25. MathWorks. Available at: www.mathworks.com. Date of access: 01.10.2013.
  26. Encyclopedia of Automotive Engineering. Wiley Online Library. Available at: http://onlinelibrary.wiley.com/book/10.1002/9781118354179. Date of access: 01.09.2015. DOI: http://dx.doi.org/10.1002/9781118354179.
  27. Robert Bosch GmbH. EU CO2 Fleet Target for Passenger Cars. 2009.
  28. A European Strategy for Clean and Energy Efficient Vehicles State of Play 2011 — Commission Staff working paper. SEC (2011) 1617 Final. Brussels, 14.12.2011, pp. 1—17.

Download

Improvement of methods for determining power and energy characteristics of fibre-reinforced concrete crack resistance

Vestnik MGSU 3/2019 Volume 14
  • Pukharenko Yuri V. - Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU) Doctor of Technical Sciences, Professor, Head of the Department of Building Materials Technology and Metrology, Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU), 4 2nd Krasnoarmeyskaya st., Saint Petersburg, 190005, Russian Federation.
  • Zhavoronkov Mikhail I. - Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU) Assistant of Department of Building Materials Technology and Metrology, Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU), 4 2nd Krasnoarmeyskaya st., Saint Petersburg, 190005, Russian Federation.
  • Panteleev Dmitry A. - Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU) Candidate of Technical Sciences, Associate Professor of Department of Building Materials Technology and Metrology, Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU), 4 2nd Krasnoarmeyskaya st., Saint Petersburg, 190005, Russian Federation.

Pages 301-310

Introduction. The actual problem of improving the methods of experimental studies of the properties of fibre-reinforced concrete obtained using various types of fibre is considered in the article. As a result of the analysis of the technical literature, some shortcomings of the existing test methods of one of the most important characteristics of fibre-reinforced concrete, crack resistance, were revealed. The aim of this study is to develop methods for determining the fibre-reinforced concrete crack resistance parameters. Materials and methods. The GOST 29167 standard is used as a basis for the development of a new method and device. Regulations of this standard pursue an aim of obtaining the most informative data about the material by plotting the dependences of test specimen deflections on the applied loads and determining with their assistance the power and energy parameters of the crack resistance. The test samples are presented by fibre-reinforced fine concrete beams made using steel wire fibre of circular cross-section and wave profile. Diagrams of the dependences of sample deflections on applied loads were plotted in the course of the tests for tension in bending. Calculations of power and energy parameters of crack resistance were conducted. Results. The device and method of testing the fibre-reinforced concrete crack resistance are developed and proved. A comparative analysis of the results of tests of steel fibre concrete samples is made. Conclusions. The proposed device and method allow researching influence of the fibre reinforcement parameters on fibre-reinforced concrete crack resistance parameters quickly and with minimal labour expenditures for preparation and tests. Increased adequacy of the obtained data promotes building up new trends in research and rapid introduction of fibre-reinforced concrete in the construction industry. As a result of the analysis of the obtained data, it is established that the proposed device and method can be recommended for research of the influence of fibrous reinforcement parameters on the obtained fibre-reinforced concrete properties and accumulation of statistical data for the development and improvement of normative and technical documents.

DOI: 10.22227/1997-0935.2019.3.301-310

Download

Results 1 - 4 of 4