Error
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering

Method for determining initial characteristics of the most unfavorable accelerograms for linear systems with finite number of degrees of freedom

Vestnik MGSU 8/2015
  • Mkrtychev Oleg Vartanovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Head of Research Laboratory “Reliability and Earthquake Engineering”, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Reshetov Andrey Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, engineer, Research Laboratory “Reliability and Earthquake Engineering”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 80-91

The paper proposes a method of determining the baseline characteristics of accelerograms required for their synthesis. Accelerograms generated according to them transmit maximum impact energy of the seismic action to a construction. However, they are possible with a certain probability for a given construction site. To solve this problem were obtained seismic characteristics of the construction site and dynamic characteristics of the structure. Then was formed the target function characterizing the energy transmitted to the structure. Characteristics corresponding to the maximum of the target function will be most unfavorable baseline characteristics of accelerograms. As construction was considered a linear system with a finite number of degrees of freedom. In paper were obtained impulse and frequency responses of the considered linear system. As the seismic characteristics of the construction site have been obtained some characteristics of accelerograms. Such as the spectral density, distribution law dominant frequency, envelope. In paper as the target function is considered the dispersion of the displacement of the highest floor of the system. As varied parameter is considered a shift of the initial spectral density of the impact. On the shift parameter imposed probabilistic restrictions due to the law of the distribution of the dominant frequency. The use of the proposed method when generating accelerograms will allow to calculate seismic stability the most complete way.

DOI: 10.22227/1997-0935.2015.8.80-91

References
  1. Bolotin V.V., Radin V.P., Chirkov V.P. Modelirovanie dinamicheskikh protsessov v elementakh stroitel’nykh konstruktsiy pri zemletryaseniyakh [Modeling Dynamic Processes in the Elements of Building Structures in Case of Earthquakes]. Izvestiya vuzov.Stroitel’stvo [News of Higher Educational Institutions. Construction]. 1999, no. 5, pp. 17—21. (In Russian)
  2. Mkrtychev O.V., Yur’ev R.V. Raschet konstruktsiy na seysmicheskie vozdeystviya s ispol’zovaniem sintezirovannykh akselerogramm [Structural Analysis on Seismic Effects Using Synthesized Accelerograms]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2010, no. 6, pp. 52—54. (In Russian)
  3. Mkrtychev O.V., Reshetov A.A. Metodika modelirovaniya naibolee neblagopriyatnykh akselerogramm zemletryaseniy [Methods of Modeling the Most Unfavorable Earthquake Accelerograms]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2013, no. 9, pp. 24—26. (In Russian)
  4. Nazarov Yu.P., Poznyak E.V., Filimonov A.V. Analiz vida volnovoy modeli i poluchenie raschetnykh parametrov seysmicheskogo vozdeystviya dlya vysotnogo zdaniya [Wave Model Analysis and Obtaining Estimated Parameters of the Seismic Action for Tall Buildings]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 5, pp. 40—45. (In Russian)
  5. Nazarov Yu.P., Poznyak E.V. O prostranstvennoy izmenchivosti seysmicheskikh dvizheniy grunta pri raschetakh sooruzheniy [On Space Variability of Seismic Movements of Soil at Structural Analysis]. Osnovaniya, fundamenty i mekhanika gruntov [Soil Mechanics and Foundation Engineering]. 2014, no. 5, pp. 17—20. (In Russian)
  6. Pshenichkina V.A., Zolina T.V., Drozdov V.V., Kharlanov V.L. Metodika otsenki seysmicheskoy nadezhnosti zdaniy povyshennoy etazhnosti [Methods of Estimating Seismic Reliability of High-Rise Buildings]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2011, no. 25, pp. 50—56. (In Russian)
  7. Cacciola P. A Stochastic Approach for Generating Spectrum Compatible Fully Nonstationary Earthquakes. Computers & Structures. 2010, vol. 88, no. 15—16, pp. 889—901. DOI: http://dx.doi.org/10.1016/j.compstruc.2010.04.009.
  8. Hernández J.J., López O.A. Response to Three-Component Seismic Motion of Arbitrary Direction. Earthquake Engineering & Structural Dynamics. 2002, vol. 31, no. 1, pp. 55—57. DOI: http://dx.doi.org/10.1002/eqe.95.
  9. Shrikhande M., Gupta V.K. On the Characterization of the Phase Spectrum for Strong Motion Synthesis. Journal of Earthquake Engineering. 2001, vol. 5, no. 4, pp. 465—482. DOI: http://dx.doi.org/10.1080/13632460109350402.
  10. Ayzenberg Ya.M., Akbiev R.T., Smirnov V.I., Chubakov M.Zh. Dinamicheskie ispytaniya i seysmostoykost’ navesnykh fasadnykh sistem [Dynamic Tests and Seismic Resistance of Hinged Facade Systems]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2008, no. 1, pp. 13—15. (In Russian)
  11. Dzhinchvelashvili G.A., Mkrtychev O.V. Effektivnost’ primeneniya seysmoizoliruyushchikh opor pri stroitel’stve zdaniy i sooruzheniy [Effectiveness of Seismic Isolation Bearings during the Construction of Buildings and Structures]. Transportnoe stroitel’stvo [Transpot Construction]. 2003, no. 9, pp. 27—31. (In Russian)
  12. Mkrtychev O.V., Dzhinchvelashvili G.A. Analiz ustoychivosti zdaniya pri avariynykh vozdeystviyakh [Analysis of Building Sustainability during Emergency Actions]. Nauka i tekhnika transporta [Science and Technology on Transport]. 2002, no. 2, pp. 34—41. (In Russian)
  13. Radin V.P., Trifonov O.V., Chirkov V.P. Model’ mnogoetazhnogo karkasnogo zdaniya dlya raschetov na intensivnye seysmicheskie vozdeystviya [A Model of Multi-Storey Frame Buildings for Calculations on Intensive Seismic Effects]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2001, no. 1, pp. 23—26. (In Russian)
  14. Tamrazyan A.G., Tomilin V.A. Nesushchaya sposobnost’ konstruktsiy vysotnykh zdaniy pri lokal’nykh izmeneniyakh fiziko-mekhanicheskikh kharakteristik materialov [Bearing Capacity of High-Rise Structures under Local Changes of Physical-Mechanical Characteristics of Materials]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2007, no. 11, pp. 24—25. (In Russian)
  15. Trifonov O.V. Modelirovanie dinamicheskoy reaktsii konstruktsiy pri dvukhkomponentnykh seysmicheskikh vozdeystviyakh [Simulation of Dynamic Response of Structures at Two-Component Seismic Impacts]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2000, no. 1, pp. 42—45. (In Russian)
  16. Thráinsson H., Kiremidjian A.S. Simulation of Digital Earthquake Accelerograms Using the Inverse Discrete Fourier Transform. Earthquake Engineering & Structural Dynamics. 2002, vol. 31, no. 12, pp. 2023—2048.
  17. Lekshmy P.R., Raghukanth S.T.G. Maximum Possible Ground Motion for Linear Structures. Journal of Earthquake Engineering. 2015, vol. 19, no. 6, pp. 938—955. DOI: http://dx.doi.org/10.1080/13632469.2015.1023472.
  18. Sanaz Rezaeian, Armen Der Kiureghian. Simulation of Synthetic Ground Motions for Specified Earthquake and Site Characteristics. Earthquake Engineering & Structural Dynamics. 2010, vol. 39, no. 10, pp. 1155—1180. DOI: http://dx.doi.org/10.1002/eqe.997.
  19. Soize C. Information Theory for Generation of Accelerograms Associated with Shock Response Spectra. Computer-Aided Civil and Infrastructure Engineering. 2010, vol. 25, no. 5, pp. 334—347. DOI: http://dx.doi.org/10.1111/j.1467-8667.2009.00643.x.
  20. Zentner I. Simulation of Non-Stationary Conditional Ground Motion Fields in the Time Domain. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. 2013, vol. 7, no. 1, pp. 37—48. DOI: http://dx.doi.org/10.1080/17499518.2013.763572.

Download

Soliton-like Lamb waves in elastic layer with negative Poisson ratio

Vestnik MGSU 4/2015
  • Avershyeva Anna Vladimirovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Strength of Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 39-49

The uniqueness of Lamb waves is in features of their distribution. They are distributed all through a slab or a layer. The Lamb waves may cover great distances. With the help of Lamb waves it is easy to monitor the defects in multilayered slabs and shells. In order to monitor the defects it is necessary to possess the knowledge about the disperse behavior of these waves depending on mechanical characteristics of the analyzed body. Dispersion curves are analyzed for Lamb waves of different modes. The dispersion relations are constructed by the exponential mappings coupled with a 6-dimentional complex Cauchy formalism. For an isotropic medium with negative Poisson’s ratio the dispersion curves are obtained and analyzed, special attention is paid to the zero fundamental symmetric modes. The authors conducted a comparative analysis of the results obtained in disserent literature. The results obtained in the article are confirmed by the asymptotic solutions worked out before.

DOI: 10.22227/1997-0935.2015.4.39-49

References
  1. Lamb H. On Waves in an Elastic Plate. Proceedings of the Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character. 1917, no. 93 (648), pp. 114—128.
  2. Viktorov I.A. Fizicheskie osnovy primeneniya ul’trazvukovykh voln Releya i Lemba v tekhnike [Physical Foundations of Rayleigh and Lamb Ultrasonic Waves Application in Technics]. Moscow, Nauka Publ., 1966, 168 p. (In Russian)
  3. Worlton D.C. Ultrasonic Testing with Lamb Waves. Non-Destructive Testing. 1957, vol. 15, no. 4, pp. 218—222.
  4. Guz’ A.N., Zozulya V.V. Neklassicheskie problemy mekhaniki razrusheniya [Non-classical Problems of Fracture Mechanics]. Khrupkoe razrushenie materiala pri dinamicheskikh nagruzkakh [Brittle Fracture of a Material at Dynamic Loads]. Vol. 4, book 2. Kiev, Naukova Dumka Publ., 1993, 240 p. (In Russian)
  5. Lamé M.G. Leçons sur la théorie mathématique de l’élasticité des corps solides. Paris, Bachelier, 1852, 335 p.
  6. Poisson S.D. Mémories de l’academic des science. 1829, vol. 8, pp. 356—580.
  7. Kuznetsov S.V., Kuznetsova M.N., Nafasov A.E. Chislennoe modelirovanie rasprostraneniya uprugikh voln i ikh vzaimodeystvie s gorizontal’nymi seysmicheskimi bar’erami [Numerical Modeling of Elastic Waves Propagation and their Interaction with Horisontal Seismic Barriers]. Preprint № 945. Moscow, IPM im. A.Yu. Ishlinskogo RAN Publ., 2010, 44 p. (In Russian)
  8. Djeran-Maigre I., Kuznetsov S.V. Soliton-Like Lamb Waves in Layered. Waves in Fluids and Solids. InTech, 2011, pp. 53—68.
  9. Rose J.L. Ultrasonic Guided Waves in Solid Media. Cambridge University Press, Cambridge, 2014, 547 p.
  10. Erofeev V.I., Kazhaev V.V., Semerikova N.P. Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineynost’ [Waves in Rods. Dispersion. Dissipation. Nonlinearity]. Moscow, Fizmatlit Publ., 2002, 208 p. (In Russian)
  11. Andrews J.P. Lamb Wave Propagation in Varying Thermal Environments. USAF, 2007, 201 p.
  12. Oldham R.D. On the Propagation of Earthquake Motion to Great Distances. Phil. Trans. Roy. Soc. London. 1900, vol. 194, pp. 135.
  13. Eliseev V.V. Mekhanika uprugikh tel [Mechanics of Elastic Bodies]. Saint Petercburg, SPbGTU Publ., 1999, 341 p. (In Russian)
  14. Kuznetsov S.V. Cauchy Six-Dimensional Formalism for Lamb Waves in Multilayered Plates. Hindawi Publishing Corporation. ISRN Mechanical Engineering. Article ID 698706, 2013, 11 p. DOI: http://dx.doi.org/10.1155/2013/698706.
  15. Stroh A.N. Steady State Problems in Anisotropic Elasticity. Journal of Mathematical Physics. 1962, vol. 41, no. 2, pp. 77—103.
  16. Shuvalov A.L. On the Theory of Wave Propagation in Anisotropic Plates. Proceedings of the Royal Society A. 2000, vol. 456, issue 2001, pp. 2197—2222. DOI: http://dx.doi.org/10.1098/rspa.2000.0609.
  17. Ewing W.M., Jardetzky W.S., Press F. Elastic Waves in Layered Media. McGraw-Hill Book Company, New-York, Toronto, London, 1957, 390 p.

Download

REPRESENTATIVE SET OF EARTHQUAKE ACCELEROGRAMMS FOR STRUCTURAL ENGINEERING OF BUILDINGS AND STRUCTURES DURING EARTHQUAKE EFFECTS

Vestnik MGSU 7/2017 Volume 12
  • Mkrtychev Oleg Vartanovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Head of Research Laboratory “Reliability and Earthquake Engineering”, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Reshetov Andrey Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Engineer, Research Laboratory “Reliability and Earthquake Engineering”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 754-760

In the process of structural engineering of buildings and structures with the use of direct dynamic methods the accelerogramms of earthquakes with the parameters corresponding to a specific construction site are required. Such accelerogramms could be obtained by various methods. For example, they could be produced by seismologists. However, for a structural engineer it could be required to get them processed (balancing, segregation of separate phase of impact, etc.), that is not always convenient to do. Moreover, an accelerogramm with slightly different spectral composition and lifespan, nevertheless applicable to a given construction site, could be required. Also an accelerogramm could be generated with the use of specially designed software. Although it’s not always convenient as it requires certain amount of time and could cause some difficulties during formation of original data for generation and also for obtaining correct results. In order to overcome the above-mentioned difficulties the authors proposed the representative set of synthesized earthquake accelerogramms which could be applied for various combinations of seismic properties of construction sites. The present article sets outs the principal approaches to formation of the set of earthquake accelerogramms, designated for design of buildings and structures in terms of earthquake effects. Purpose requirements to discrete accelerogramms and to the set as a whole have been disclosed, purpose characteristics of accelerogramms have been set out, clarifications and recommendations for application of the representative set of accelerogramms in practical calculations have been enclosed.

DOI: 10.22227/1997-0935.2017.7.754-760

Download

DEVELOPING ELECTROSTATIC METHOD OF LIQUID MEDIUM DISPERSION

Vestnik MGSU 1/2018 Volume 13
  • Mukanov Ruslan Vladimirovich - Astrakhan State University of Architecture and Civil Engineering (ASUACE) senior lecturer, Department of Engineering Systems and Ecology, Astrakhan State University of Architecture and Civil Engineering (ASUACE), 18 Tatishcheva st., Astrakhan, 414056, Russian Federation.
  • Svintsov Vladimir Yakovlevich - Astrakhan State University of Architecture and Civil Engineering (ASUACE) Doctor of Technical Sciences, Professor, Department of Engineering Systems and Ecology, Astrakhan State University of Architecture and Civil Engineering (ASUACE), 18 Tatishcheva st., Astrakhan, 414056, Russian Federation.

Pages 44-52

Subject: the paper considers the development of a method for liquid media dispersion using a high-potential electrostatic field. The existing methods for dispersing liquid media used in industry nowadays have both a number of advantages and disadvantages, the main ones being: the heterogeneity of the particles in size and the increased energy costs for the dispersion process. The analysis of literature sources has shown that with regard to the dispersion of food products during the drying process, the electrostatic dispersion method has encouraging results. This induces great interest in approbation of the electrostatic dispersion method for a wide range of substances, as applied to other industries. To assess the potential of this method, experimental studies were carried out on the dispersion of liquids with electrically conducting, semiconducting and dielectric properties. Research objectives: obtain dependence of dispersity of spray (with an average diameter of droplets) on flow rate and voltage of the high-voltage power supply unit. Materials and methods: to achieve the goal, an experimental device was developed consisting of several functional blocks that allow us to change the flow rate of the medium being atomized, as well as the intensity and geometry of the electrostatic field. During development of the experimental device, in order to select the main equipment, the voltage outputted by the high-voltage power supply unit, as well as its power, were estimated. The results of the experiments (dispersion process) were recorded using digital photo equipment, which allowed us to determine the sizes of the dispersion particles on the basis of their comparison with the reference value. Results: it has been experimentally confirmed that the electrostatic dispersion method makes it possible to obtain a spray with predefined dispersity parameters at high degree of homogeneity. Conclusions: the experiments confirmed the working capacity of the given method of liquid medium dispersion. As a result of processing of the experimental data, a range of voltages was determined at which the change in the dispersity is the most intense. The obtained data form the basis for the development of dispersion devices for various industries.

DOI: 10.22227/1997-0935.2018.1.44-52

Download

HIGH-QUALITY ORNAMENTAL FINE CONCRETES MODIFIED BY NANOPARTICLES OF TITANIUM DIOXIDE

Vestnik MGSU 6/2012
  • Bazhenov Yuriy Mikhaylovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Head of the Department of Technologies of Cohesive Materials and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, 129337, Russian Federation.
  • Korolev Evgeniy Valer'evich - Moscow State University of Civil Engineering (MSUCE) Doctor of Technical Sciences, Professor, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Lukuttsova Natal'ya Petrovna - Bryansk State Academy of Engineering and Technology (BSAET) Doctor of Technical Sciences, Professor +7 (4832) 74-60-08, +7 (4832) 74-05-13, Bryansk State Academy of Engineering and Technology (BSAET), 3 pr. St.-Dimitrova, Bryansk, 241037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zavalishin Sergey Iosifovich - Moscow State University of Civil Engineering (MSUCE) Candidate of Technical Sciences, Professor, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Chudakova Ol'ga Andreevna - Bryansk State Academy of Engineering and Technology (BSAET) postgraduate student, +7 (4832) 74-60-08, +7 (4832) 59-56-39, Bryansk State Academy of Engineering and Technology (BSAET), 3 pr. St.-Dimitrova, Bryansk, 241037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 73 - 78

Ultrasonic method of generation of a stable suspension of nano-particles of titanium dioxide and the strengthening properties of the ornamental fine concrete that contains cement binders with a nano-dispersed additive constitute the subject of the research covered by the authors. Nanoparticles react with the basic chemical elements that compose the concrete and act as crystallization centres. Therefore, the concrete porosity is reduced, while physical and technology-related properties of the ornamental fine concrete are improved.
The authors have proven that the application of the nano-dispersed additive that contains titanium dioxide influences the processes of the structure formation in respect of fine ornamental concretes and improves the strength, as well as the water and cold resistance of fine concretes. The improvement is attributed to the dense concrete structure and strong adhesion between cement grains and between the cement and the aggregate. This conclusion is based on the data obtained through the employment of an electronic microscope used to identify the porosity of fine concretes.

DOI: 10.22227/1997-0935.2012.6.73 - 78

References
  1. Drinberg A.S., Kalinskaya T.V., Itsko E.F. Neorganicheskie pigmenty, proizvodstvo i perspektivy [Inorganic Pigments, Production and Prospects]. Lakokrasochnye materialy i ikh primenenie [Paint-and-Lacquer Materials and Application]. 2007, no. 12, pp. 20—28.
  2. Latyshev Yu.V., Lenev L.M. Tseny na TiO2 — stabil’ny!? Chego mogut zhdat’ potrebiteli etogo syr’ya? [Prices for TiO2: are They Stable!? What Can Consumers Expect of This Material?] Lakokrasochnye materialy i ikh primenenie [Paint-and-Lacquer Materials and Application]. 2007, no. 12, pp. 12—19.
  3. Lukuttsova N.P., Chudakova O.A., Khotchenkov P.V. Dekorativno-otdelochnye izdeliya na osnove nanomodifitsiruyushchey dobavki [Ornamental Finishing Products That Contain Nano-Modifiers]. Vestnik BGTU im. V.G. Shukhova [Proceedings of Voronezh State University of Technology]. 2011, pp. 67—72.

Download

Physical parameters of high expansion foam used for fire suppression in the enclosed space

Vestnik MGSU 2/2015
  • Korol’chenko Dmitriy Aleksandrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, chair, Department of Complex Safety in Construction, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14 (ext. 30-66); This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sharovarnikov Aleksandr Fedorovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Complex Safety in Construction, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14 (ext. 30-66); This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 85-92

During proving ground tests there were revealed regularities of fire suppression in enclosed space by high expansion foam using the method of volumetric filling. It is shown that the structure of a dispersed phase, particularly of smoke, has a great influence on the resistance of foam to destruction. The impact mechanism of smoke components on the formation of high expansion foam basing on the condition of integrity preserving of foam agent water solution films is considered. A short description of the interaction of smoke components with foam is given. The influence of concentration and nature of surface-active substances (SAS), concentration and nature of smoke is investigated, as well as electrokinetic parameters of foam on the foam forming process with receiving the foams of a specified structure and with control of such parameters as frequency rate, dispersion, thickness of foam films, capillary pressure in a Plateau Gibbs channels. The results of proving ground tests are presented. It is shown that application of the compositions with the highest fatty alcohols (HFA) additives as stabilizers of foam leads to increase of its stability. It is also shown that increase of foam expansion rate and dispersion of foamy bubbles leads to increase of viscoelastic properties of foam. The analysis of the material balance of high expansion foam supplied for fire suppression in enclosed premises, without account for smoke existence in it, is carried out. It is shown that the given formula includes the balance of foam accumulated and destroyed under the influence of flame and hydrostatic pressure of a solution in foamy channels.

DOI: 10.22227/1997-0935.2015.2.85-92

References
  1. Delahay P. Double Layer and Electrode Kinetics. New York—London—Sidney, A Division of John Wiley & Sons, Inc., 1965, 321 p.
  2. Sharovarnikov A.F. Protivopozharnye peny. Sostav, svoystva, primenenie [Fire-Fighting Foams. Structure, Properties, Application]. Moscow, Znak Publ., 2000, 445 p. (In Russian)
  3. Adamson A.W., Gast A.P. Physical Chemistry of Surfaces. Wiley-Interscience, 6 edition, 1997, 808 p.
  4. Semenov P. Techenie zhidkosti v tonkikh sloyakh [Fluid Flow in Thin Layers]. Zhurnal tekhnicheskoy fiziki [Technical Physics]. 1944, vol. 14, no. 7—8, pp. 427—437. (In Russian)
  5. Rebinder P.A. Izbrannye trudy. Poverkhnostnye yavleniya v dispersnykh sistemakh. Kolloidnaya khimiya [Selected Works. Surface Phenomena in Disperse Systems. Colloid Chemistry]. Moscow, Nauka Publ., 1978, 368 p. (In Russian)
  6. Blinov V.I., Khudyakov G.N. Diffuzionnoe gorenie zhidkostey [Diffusion Burning of Liquids]. Moscow, AN SSSR Publ., 1961, 208 p. (In Russian)
  7. Zel’dovich Ya.B., Barenblatt G.I., Librovich V.B., Makhviladze G.M. Matematicheskaya teoriya goreniya i vzryva [Mathematical Theory of Burning and Explosion]. Moscow, Nauka Publ., 1980, 480 p. (In Russian)
  8. Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [Mechanics of Liquid and Gas]. Moscow, Nauka Publ., 1973. 847 p. (In Russian)
  9. McAdams W. H. Heat Transmission. New York, McGraw-Hill, 3rd edition, 1954, 490 p.
  10. Nash P. Powder and Extinguishing System. Fire Prevention. 1977, no. 118, pp. 17—21.
  11. Summ B.D., Goryunov Yu.V. Fiziko-khimicheskie osnovy smachivaniya i rastekaniya [Physical and Chemical Basis of Wetting and Flowing]. Moscow, Khimiya Publ., 1976, 232 p. (In Russian)
  12. Schreiber G., Porst P. Ognetushashchie sredstva. Khimiko-fizicheskie protsessy pri gorenii i tushenii [Fire Extinguishing Agents. Chemical and Physical Processes while Burning and Suppression]. Moscow, Stroyizdat Publ., 1975, 240 p. (In Russian)
  13. Sharovarnikov A.F., Voevoda S.S., Molchanov V.P. Sovremennye sredstva i sposoby tusheniya pozharov nefteproduktov [Modern Means and Ways of Fire Extinguishing of Oil Products]. Moscow, Kalan Publ., 2000, 420 p. (In Russian)
  14. Sharovarnikov A.F., Sharovarnikov S.A. Penoobrazovateli i peny dlya tusheniya pozharov. Sostav, svoystva, primenenie [Foam Concentrates and Fire Extinguishing Foams. Structure, Properties, Application]. Moscow, Pozhnauka Publ., 2005, 335 p. (In Russian)
  15. Molchanov V.P., Sharovarnikov S.A. Zakonomernosti tusheniya pozharov v rezervuarakh podsloynoy sistemoy [Regularities of Fire Suppression in Tanks by Sublayer System]. Informatizatsiya sistem bezopasnosti : materialy IV Mezhdunarodnoy konferentsii ISB—95 [Materials of the Fourth International Conference “Informatization of Safety Systems”–ISB-95]. Moscow, VIPTSh MVD RF Publ., 1995, pp. 129—137. (In Russian)
  16. Korolchenko A.Ya., Sharovarnikov S.A. Tushenie smesevykh topliv ftorsoderzhashchimi penoobrazovatelyami penoobrazovatelyami [Suppression of Composite Fuels by Fluorine-Containing Foam]. Informatizatsiya sistem bezopasnosti : materialy IV Mezhdunarodnoy konferentsii ISB—95 [Materials of the Fourth International Conference “Informatization of Safety Systems”–ISB-95]. Moscow, VIPTSh MVD RF Publ., 1995, pp. 14—17. (In Russian)
  17. Vinogradov G.V., Malkin A.Ya. Reologiya polimerov [Rheology of Polymers]. Moscow, Khimiya Publ., 1977, 440 p. (In Russian)
  18. Sharovarnikov S.A., Korolchenko A.Ya., Krymov A.V. Obespechenie pozharnoy bezopasnosti rezervuarov so smesevym toplivom : materialy nauchno-prakticheskoy konferentsii. Moskva, 3 dekabrya 1996 goda [Ensuring of Fire Safety of Tanks with Composite Fuels. Materials of Scientific and Practical Conference. Moscow, 3 December, 1996]. Moscow, MIPB MVD Rossii Publ., 1996, pp. 167—170. (In Russian)
  19. Grashichev N.K. Zakonomernosti tusheniya nefteproduktov podachey peny v sloy goryuchego : avtoreferat dissertatsii kandidata tekhnicheskikh nauk [Regularities of Suppression of Oil Products by Supplying Foam in a Fuel Layer. Abstract of the Dissertation of Candidate of Technical Sciences]. Moscow, VIPTSh MVD RF Publ., 1991, 21 p. (In Russian)
  20. Exerowa D., Khristov Khr., Penev J. Some Techniques for the Investigation of Foam Stability. Foams. Proc. Symp. on Foams. R.J. Ekers (ed.). N-Y.—London, Academic Press, 1976, 109 p.

Download

STUDY OF ELECTROSTATIC DISPERSION

Vestnik MGSU 5/2016
  • Mukanov Ruslan Vladimirovich - Astrakhan State University of Architecture and Civil Engineering (AGASU) senior lecturer, Department of Engineering Systems and Ecology, Astrakhan State University of Architecture and Civil Engineering (AGASU), 18 Tatishcheva street, Astrakhan, 414056, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Svintsov Vladimir Yakovlevich - Astrakhan State University of Architecture and Civil Engineering (AGASU) Doctor of Technical Sciences, Professor, Department of Engineering Systems and Ecology, Astrakhan State University of Architecture and Civil Engineering (AGASU), 18 Tatishcheva street, Astrakhan, 414056, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Derbasova Evgeniya Mikhaylovna - Astrakhan State University of Architecture and Civil Engineering (AGASU) Candidate of Technical Sciences, chair, Department of Engineering Systems and Ecology, Astrakhan State University of Architecture and Civil Engineering (AGASU), 18 Tatishcheva street, Astrakhan, 414056, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 130-139

The article deals with the problems of studying the process of dispersing liquid fuel and water-fuel emulsions, in particular the characteristics of the dispersed spray in high-potential electrostatic fields. The paper deals with the development of a research method for disperse characteristics of liquid fuels, in particular, the changes in the diameter of the spray particles of liquid fuels and water-fuel emulsions based on them, depending on the intensity of high-grade electrostatic field. These studies are relevant in the creation of new devices based on new dispersion, which are not currently used for fuel atomization and combustion devices, in particular based on the electrostatic dispersion. The currently available methods for assessing dispersion are based on the evaluation of the particle diameter, which are formed by dispersing (particle breakage) of the liquid fuel. The views expressed in the course of the study suggest that the dependence of the particle diameter from the electrostatic field can be estimated not only in case of the destruction of the particles (dispersion), but also in case of the formation (growth) of drops during the expiration of the capillary. In order to confirm the provisions the authors developed the installation and technique to study the changes in the dispersion in dependence with the voltage value of high potential electrostatic field. The results of experimental studies are presented and experimental graphics are built for F5 bunker fuel and water-oil emulsions with different concentrations based on it. On the basis of the experimental data processed by correlation analysis method the authors obtained the mathematical model of diameter changes of the particles under the influence of an electrostatic field, which corresponds to the theory of electrostatic dispersion. The developed technique greatly simplifies the determination of the disperse characteristics of liquid fuel in case of electro-static dispersion.

DOI: 10.22227/1997-0935.2016.5.130-139

References
  1. Knorre G.F., Aref’ev K.M., Blokh A.G., Nakhapetyan E.A., Paleev I.I., Shteynberg V.B. Teoriya topochnykh protsessov [Theory of Burning Processes]. Moscow, Leningrad, Energiya Publ., 1966, 491 p. (In Russian)
  2. Khzmalyan D.M., Kagan Ya.A. Teoriya goreniya i topochnye ustroystva [Burning Theory and Burning Installations]. Moscow, Energiya Publ., 1976, 487 p. (In Russian)
  3. Pomerantsev V.V., Aref’ev K.M., Akhmedov D.B., et al. Osnovy prakticheskoy teorii goreniya [Fundamentals of the Practical Burning Theory]. 2nd edition, enlarged. Leningrad, Energoatomizdat Publ., 1986, 309 p. (In Russian)
  4. Frenkel’ A.I. Na zare fiziki [At the Dawn of Physics]. Leningrad, Nauka Publ., 1970, 384 p. (In Russian)
  5. Pazhi D.G., Galustov V.S. Osnovy tekhniki raspylivaniya zhidkostey [Fundamentals of Liquid Atomization Technique]. Moscow, Khimiya Publ., 1984, 256 p. (Protsessy i apparaty khimicheskoy i neftekhimicheskoy tekhnologii [Processes and Devices of Chemical and Petroleum Technology]) (In Russian)
  6. Salimov A.U. et al. Voprosy teorii elektrostaticheskogo raspylivaniya [Issues of the Theory of Electrostatic Dispersion]. Tashkent, AN UzSSR Publ., 1968, 160 p. (In Russian)
  7. Elektrostaticheskoe raspylenie [Electrostatic Dispersion]. LKM portal. Available at: http://www.lkmportal.com/enc/elektrostaticheskoe-raspylenie. (In Russian)
  8. Svintsov V.Ya. Vliyanie elektricheskogo polya na fizicheskie kharakteristiki biosyr’ya [Influence of Electric Field on the Physical Characteristics of Bio Raw Materials]. Khranenie i pererabotka sel’khozsyr’ya [Storage and Processing of Agricultural Raw Materials]. 1995, no. 6, pp. 14—15. (In Russian)
  9. Svintsov V.Ya., Mukanov R.V. Novyy metod szhiganiya zhidkogo topliva v topochnykh ustroystvakh kotel’nykh agregatov [New Method of Liquid Fuel Combustion in Burning Installations of Boiler Units]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2012, no. 8, pp. 21—23. (In Russian)
  10. Svintsov V.Ya., Shmatova E.N., Khlystunov M.S., Mukanov R.V. Elektrostaticheskiy sposob dispergirovaniya zhidkikh topliv primenitel’no k kotel’nym ustanovkam [Electrostatic Dispersion Method of Liquid Fuels Applied to Boiler Units]. Nauchno-tekhnicheskiy vestnik Povolzh’ya [Scientific and Technical Proceedings of the Volga Region]. 2013, no. 1, pp. 255—258. (In Russian)
  11. Abdullaev R.Kh., Agaev A.A., Kurbanaliev T.G., Rzabekov I.N., Bekmamedov Kh. Izuchenie drobleniya kapel’ polyarnoy zhidkosti v uglevodorodnoy srede pod deystviem elektricheskogo polya [Investigation of Drop Breaking of Polar Fluid in Hydrocarbon Environment under the Influence of Electric Field]. Izvestiya VUZov. Neft’ i gaz [Higher Educational Institutions News. Oil and Gas]. 1971, no. 2, pp. 63—66. (In Russian)
  12. Bekmamedov X., Agaev A.A., Abdullaev R.Kh., Samedova L.A. Osobennosti dispergirovaniya polyarnoy zhidkosti v uglevodorodnoy srede pod deystviem elektricheskogo polya [Features of Dispersion of Polar Fluid in Hydrocarbon Environment under the Influence of Electric Field]. Izvestiya VUZov. Neft’ i gaz [Higher Educational Institutions News. Oil and Gas]. 1973, no. 5, pp. 51—55. (In Russian)
  13. Svintsov V.Ya., Mukanov R.V. Razrabotka metoda issledovaniya fizicheskikh kharakteristik zhidkogo topliva v vysokovol’tnom elektrostaticheskom pole [Development of the Investigation Method of Physical Features of Liquid Fuel in High-Voltage Electrostatic Field]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2012, no. 8, pp. 26—28. (In Russian)
  14. Kuznetsov V.V. Fizicheskaya i kolloidnaya khimiya [Physical and Colloid Chemistry]. 2nd edition, revised and enlarged. Moscow, Vysshaya shkola Publ., 1968, 390 p. (In Russian)
  15. Ravdel’ A.A., Ponomareva A.M., editors. Kratkiy spravochnik fiziko-khimicheskikh velichin [Quick Reference of Physical and Chemical Values]. 8th edition, revised. Leningrad, Khimiya Publ., 1983, 231 p. (In Russian)
  16. Ivanov V.M. Toplivnye emul’sii [Emulsified Fuels]. Moscow, Izdatel’stvo Akademii nauk SSSR Publ., 1962, 216 p. (In Russian)
  17. Ivanov V.M., Kantorovich B.V. Toplivnye emul’sii i suspenzii [Emulsified Fuels and Suspensions]. Moscow, Metallurgizdat Publ., 1963, 183 p. (In Russian)
  18. Adamchevskiy I. Elektricheskaya provodimost’ zhidkikh dielektrikov [Electric Conductivity of Liquid Dielectrics]. Translated from Polish. Leningrad, Energiya Publ., 1972, 295 p.(In Russian)
  19. Arkhipov G.I., Sadovnichiy V.A., Chubarikov V.N. Lektsii po matematicheskomu analizu [Lectures on Mathematical Analysis]. 5th edition, revised. Moscow, Izdatel’stvo Moskovskogo universiteta, Drofa Publ., 2004, 638 p. (In Russian)
  20. Vinogradova I.A., Olekhnik S.N., Sadovnichiy V.A. Zadachi i uprazhneniya po matematicheskomu analizu : v 2 chastyakh [Tasks and Exercises on Mathematical Analysis : in 2 parts]. 3rd edition, revised. Moscow, Drofa Publ., 2001, part 2: Ryady, nesobstvennye integraly, ryady Fur’e, preobrazovanie Fur’e [Series, Improper Integrals, Fourier Series, Fourier transformation]. 710 p. (In Russian)

Download

Results 1 - 7 of 7