-
Umnyakova Nina Pavlovna -
Scientific and Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (NIISF RAASN)
+7 (495) 482-39-67, Scientific and Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (NIISF RAASN), 21 Lokomotivnyy proezd, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The author examines possible reasons for the fracturing of external three – layered walls that have an efficient insulation of the thickness of 120 — 150 mm. The external wall layer is made of bricks. A comparative analysis of the temperature distribution inside the walls has demonstrated that the full-depth frost penetration into the brick facing of the wall that has 120 mm insulation occurs when the outside temperature is below –1 °C. However, the same effect occurs when the outside temperature is below –3 °C in respect of walls that have 50 mm insulation.If the average monthly temperature pattern, particularly the autumn one, is taken into consideration, in the event of the average November temperature of –2.2 °C the chance of full — depth wall freezing is higher if the insulation layer is thicker, and lower, if the insulation layer is 50 mm thick. The analysis of average monthly temperatures and ranges of their fluctuations has revealed that full-depth wall freezing lasts for 6 months, if the insulation layer is 120 mm thick, and if the insulation layer is thinner, the effect lasts only for 4 months. These calculations have proven that the thicker the insulation, the higher the temperature deformations and temperature stresses within the outside brick layer. These effects accelerate the fracturing of three — layered walls.
DOI: 10.22227/1997-0935.2013.1.94-100
References
- SNiP II-3—79*. Stroitel’naya teplotekhnika [Construction Norms and Rules II-3—79*. Heat Engineering in Construction]. Moscow, Gosstroy SSSR Publ., 1985.
- SNiP 23-02—2003. Teplovaya zashchita zdaniy [Construction Norms and Rules 23-02—2003. Thermal Protection of Buildings]. Moscow, Gosstroy SSSR Publ., 2004, 26 p.
- Shubin I.L., Umnyakova N.P. Aktualizirovannye stroitel’nye normy po zashchite ot shuma, estestvennomu i iskusstvennomu osveshcheniyu i teplovoy zashchite zdaniy, razrabotannye NIISF RAASN [Revised Construction Norms Applicable to Noise Protection, Natural and Artificial Illumination and Thermal Protection of Buildings Developed by Scientific and Research Institute of Building Physics of RAACS]. Materialy mezhdunarodnoy konferentsii «Sovremennye innovatsionnye tekhnologii izyskaniy, proektirovaniya i stroitel’stva v usloviyakh Kraynego Severa [Works of International Conference on Advanced Innovative Technologies of Surveying, Design and Construction in the Far North]. Yakutsk, 8—10 August, 2012, pp. 40—54.
- Fokin K.F. Stroitel’naya teplotekhnika ograzhdayushchikh chastey zdaniy [Heat Engineering of Envelope Elements of Buildings]. Moscow, 2006, 256 p.
- SNiP 23-01—99. Stroitel’naya klimatologiya [Construction Norms and Rules 23-01—99. Construction Climatology]. Moscow, 2011, 94 p.
- SNiP 2.01.01—82. Stroitel’naya klimatologiya i geofi zika. [Construction Norms and Rules 2.01.01—82. Construction Climatology and Geophysics]. Moscow, Gosstroy SSSR Publ., 1983, 136 p.
- Umnyakova N.P. Vliyanie temperaturnykh kolebaniy naruzhnogo vozdukha na obrazovanie kondensata v vozdushnoy prosloyke ventiliruemykh fasadov [Infl uence of Temperature Fluctuations of the Outside Air onto Formation of Condensate within the Air Space of Ventilated Facades]. Stroitel’nye materialy, oborudovanie i tekhnologii XXI veka [Construction Materials, Machinery and Technologies of the 21st Century]. 2004, no. 7, pp. 65—67.
- Umnyakova N.P. Vozvedenie energoeffektivnykh zdaniy v tselyakh umen’sheniya negativnogo vozdeystviya na okruzhayushchuyu sredu [Erection of Energy Efficient Buildings with a View to Reduction of the Negative Impact onto the Environment]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 3, vol. 2, pp. 459—464.
- Umnyakova N.P., Egorova T.S., Belogurov P.B., Andreytseva K.S. Povyshenie energoeffektivnosti zdaniy za schet povysheniya teplotekhnicheskoy odnorodnosti naruzhnykh sten v zone sopryazheniya s balkonnymi plitami [Improvement of the Energy Efficiency of Buildings through Improvement of Thermal Engineering Homogeneity of External Walls in the Zone of Interface with Balcony Slabs]. Stroitel’nye materialy [Construction Materials]. 2012, no. 6, pp. 19—21.
- Umnyakova N.P. Osobennosti proektirovaniya energoeffektivnykh zdaniy, umen’shayushchikh negativnoe vliyanie na okruzhayushchuyu sredu [Design of Energy Efficient Buildings Capable of Mitigating the Negative Impact onto the Environment]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta [Proceedings of South-Western State University]. 2011, no. 5, part 2, pp. 33—38.
-
Valuyskikh Victor Petrovich -
Vladimir State University named after Alexander and Nikolai Stoletov (VLSU)
Doctor of Technical Sciences, Professor, Member, Russian Academy of Transport (RAT), head, Department of Strength of Materials, Vladimir State University named after Alexander and Nikolai Stoletov (VLSU), 87, Gor'kogo St., Vladimir, 600000, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Strizhova Svetlana Viktorovna -
Vladimir State University named after Alexander and Nikolai Stoletov (VLSU)
architect, applicant, Department of Strength of Materials, Vladimir State University named after Alexander and Nikolai Stoletov (VLSU), 87, Gor'kogo St., Vladimir, 600000, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Lisenkov Kirill Vladimirovich -
Vladimir State University named after Alexander and Nikolai Stoletov (VLSU)
postgraduate student, Department of Strength of Materials, Vladimir State University named after Alexander and Nikolai Stoletov (VLSU), 87, Gor'kogo St., Vladimir, 600000, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
In the article service temperatures of fence walls, designed according to Sanitary Norms and Requirements SNIP II-3—79 and SNiP 23-02—2003 are considered. In recent years the service temperatures of fence wall materials and front bricks in off-season period changed fundamentally. The control over physical and mechanical characteristics of wall materials significantly weakened. The surveys show that already after 4–6 years of buildings operation more than 34 % of three-layered walls are in urgent need of major repairs. This author estimates the reasons for the destruction of the face work of buildings and structures made of ceramic hollow bricks, as well as the period of unsafe operation of three-layered walls brickwork. Thermal performance of different structures containing fence walls are considered. In stone walls the "dew point" moves in the outer thin layer of fence walls. In three-layered walls dew point moves along the entire wall thickness. When using ceramic hollow bricks, additional condition of deterioration of the wall is the occurrence of stress concentrations. One of the reasons for ceramic hollow bricks destruction is an irrational structure of voids. Improving physical and mechanical characteristics of hollow bricks, in particular, thermal resistance and frost resistance, can be achieved by using voids of hyper-parametric cross-sectional shape, rational size and position. We believe, that in order to increase the durability of three-layered fence walls strict control over the physical and mechanical characteristics of wall materials is needed, the same as significant severization of the requirements to frost-resistance of bricks. We offer many ideas, which will reduce the time and cost of buildings and structures construction.
DOI: 10.22227/1997-0935.2013.11.155-160
References
- Valuyskikh V.P. Effektivnye ekonomicheskaya strategiya, stenovye materialy i tekhnologii zhilishchnogo stroitel'stva [Effective Economic Strategy, Wall Materials and Housing Technologies]. Innovatsii v stroitel'stve i arkhitekture [Innovations in Construction and Architecture]. Vladimir, Vladimir State University, Tranzit-IKS Publ., 2012, pp. 170—197.
- Valuyskikh V.P., Strizhova S.V., Palkin P.A. Konstruktsii ograzhdayushchikh i nesushchikh sten v maloetazhnom stroitel'stve [Construction of Fence and Bearing Walls in Low-rise Buildings]. Stroitel'naya industriya: vchera, segodnya, zavtra: III Vserossiyskaya nauchno-prakticheskaya konferentsiya: sbornik statey [Construction Industry: Yesterday, Today, Tomorrow. 3rd All-Russian Scientific-Practical Conference: Collection of Works]. Penza, RIO PGSKhA Publ., 2012, pp. 27—31.
- Fokin K.F. Stroitel'naya teplotekhnika ograzhdayushchikh chastey zdaniy [Building Heat Engineering of the Enclosing Parts of Buildings]. Moscow, AVOK-PRESS Publ., 2006, 136 p.
- Allcut E.A. General Discussion on Heat Transfer. London, 1951, 91 p.
- Tye R.P. Thermal Conductivity. London–N.Y., Academic Press, 1969, vol. 1, 441 p.
- Umnyakova N.M. Dolgovechnost' trekhsloynykh sten s oblitsovkoy iz kirpicha s vysokim urovnem teplovoy zashchity [Durability of Three-layered Walls with Brick Facing that Provides High Thermal Protection]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 1, pp 94—100.
- Valuyskikh V.P., Gribanov A.S., Evdokimov A.P., Lisenkov K.V. Giperparametricheskie tsilindricheskie makropustoty v stenovykh materialakh [Hyper-parametric Cylindrical Macrovoids in Wall Materials]. Innovatsii v stroitel'stve i arkhitekture [Innovations in Construction and Architecture]. Vladimir, Vladimir State University, 2012, pp. 137—140.
- Valuyskikh V.P., Lisenkov K.V. RU Patent 118 993 U1, MPK E04C 1/00. Silikatnye pustotnye kirpichi. Zayavka ¹ 30.03.2012; opubl. 10.08.2012, Byul. ¹22 [RF Patent 118 993 U1, MPK E04C 1/00. Silicate hollow bricks. Application no. 30.03.2012, published 10.08.2012, Bulletin no. 22]. 2 p.
- Malakhova A.N., Balakshin A.S. Primenenie stenovykh melkikh blokov iz yacheistykh betonov v nesushchikh stenakh zdaniy sredney etazhnosti [Using Small Cellular Concrete Blocks to Make Bearing Walls of Mid-rise Buildings]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no.1, pp. 87—93.