-
Ustinova Yuliya Valer’evna -
Moscow State University of Civil Engineering (MGSU)
Candidate of Technical Sciences, Associate Professor, Department of General Chemistry, Moscow State University of Civil Engineering (MGSU), 6 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Nasonova Alla Evgenievna -
Moscow State University of Civil Engineering (MGSU)
+7 (499) 183-32-92, Moscow State University of Civil Engineering (MGSU), 6 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The article covers the importance of environmental assessments of building materials. Magnesium binding materials were selected as the subject of the environmental analysis. The water resistance of these materials is regarded as one of environmental criteria. Thus, the purpose of this paper is an assessment of the life cycle of additives proposed to improve the water resistance of magnesium binding materials. Redispersible polymer powder based on the copolymer of vinyl acetate and vinilversatata, polyvinyl acetate dispersion, sodium carboxymethyl cellulose, oxalic acid, chrysotile asbestos, modified using concentrated sulfuric acid and micro-silica were selected for research purposes.The following findings have been generated in the course of the research:1. Correlation between the environmental assessment of the application of modifiers with the strength test results of caustic magnesite samples in dry and saturated states is identified.2. Organic additives classified as producing an unsatisfactory environmental impact do not significantly affect the water resistance of the caustic magnesite sample.3. Oxalic acid, chrysotile asbestos modified using sulfuric acid and micro-silica are acceptable for magnesium binding materials in terms of their environmental analysis.4. Micro-silica is the additive that demonstrates the best properties both in terms of its environmental analysis and in terms of improving the water resistance of magnesium binding materials.5. Environmental analysis of the life cycle of modifiers can be recommended as an important stage in the planning of experiments aimed at improvement of properties of building materials.
DOI: 10.22227/1997-0935.2013.2.123-129
References
- Kohler N. Grundlagen zur Bewertung kreislaufgerechter, nachhaltiger Baustoffe, Bauteile und Bauwerke 20. Aachener Baustofftag. March 3, 1998.
- Knyazeva V. P. Ekologicheskie aspekty vybora materialov v arkhitekturnom proektirovanii [Environmental Aspects of Selection of Materials in the Architectural Design]. Moscow, Arkhitektura-S Publ., 2006, 296 p.
- Rogovin Z.A. Khimicheskie prevrashcheniya i modifikatsiya tsellyulozy [Chemical Transformations and Modification of Cellulose]. Moscow, Khimiya Publ., 1987, 173 p.
- Patent RF 2375323. Sposob polucheniya silikokizeritovogo vyazhushchego [RF Patent 2375323. Method of Generation of the Silica-kizerit Binding Material]. Published on December 10, 2009.
- Pustovgar A.P. Effektivnost’ dobavok mikrokremnezema pri modifikatsii betonov [Effectiveness of Micro-silica Additives If Used to Modify Concretes]. StroyPROFIl’ Internetzhurnal [Construction Profile Internet Journal]. 2005, no. 8. Available at: http // storyprofile.com/archive/1980. Date of access: December 06, 2012.
- Legostaeva N.V. Magnezial’nye vyazhushchie i materialy na ikh osnove iz magnezitov Savinskogo mestorozhdeniya [Magnesia Binders and Materials on Their Basis Made of Magnesites of Savinskoye Deposit]. Tomsk, 2006.
-
Ustinova Yuliya Valer'evna -
Moscow State University of Civil Engineering (MSUCE)
+7 (499) 183-32-92, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Nasonova Alla Evgenievna -
Moscow State University of Civil Engineering (MGSU)
+7 (499) 183-32-92, Moscow State University of Civil Engineering (MGSU), 6 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Nikiforova Tamara Pavlovna -
Moscow State University of Civil Engineering (MGSU)
Candidate of Technical Sciences, Deputy Chair, Department of General Chemistry, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
-
Kozlov Valeriy Vasil'evich -
Moscow State University of Civil Engineering (MSUCE)
Doctor of Technical Sciences, Professor, Department of Building Materials,
+7 (499) 183-32-29, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
The authors demonstrate that the use of the dry mix that constitutes caustic magnesite and a micro-silica additive makes it possible to obtain a binding material that contributes to formation of a durable and water-resistant artificial stone. The results of the research performed through the employment of methods of Fourier IR spectroscopy and electronic microscopy are provided. Interaction between magnesium oxide (MgO) as the basic oxide and micro-silica as the acidic oxide is proposed.
The compressive strength of the dry mix containing 16.7 % of micro-silica has been measured. In the event of hydraulic hardening, the compressive strength is equal to 11.5 MPa and 12.0 MPa in dry and water-saturated states, respectively. In the aftermath of air setting, the compressive strength is 10.0 MPa and 21.0 MPa in dry and water-saturated states, respectively.
Thereafter, the dry mix is gaged by the sulfuric acid solution (10 %) to identify the pH influence. In the event of hydraulic hardening, the compressive strength is 19.8 MPa and 14.1 MPa in dry and water-saturated states, respectively. In the aftermath of air setting, the compressive strength is 18.0 MPa and 19.9 MPa in dry and water-saturated states, respectively.
DOI: 10.22227/1997-0935.2012.7.147 - 151
References
- Ustinova Yu.V., Nikiforova T.P., Kozlov V.V., Nasonova A.E. Issledovanie vzaimodeystviya kausticheskogo magnezita s dobavkoy khrizotil-asbesta [Research of Interaction between Caustic Magnesite and the Chrysotile-asbestos Additive] Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 4, pp. 169—173.
- Ustinova Yu.V., Nasonova A.E., Kozlov V.V. Povyshenie vodostoykosti magnezial’nykh vyazhushchikh [Improvement of Water Resistance of Magnesium Binders]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, vol. 3, pp. 123—127.
- Sidorov V.I., Tupikin E.I., Malyavskiy N.I., Ustinova Yu.V., Platonova E.E. Ekologicheskie aspekty primeneniya i ekspluatatsii konstruktsiy na osnove steklomagnievogo lista [Environmental Aspects of Application and Operation of Structures Based on the Glass-and-Magnesium Sheet]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Lands]. 2009, no. 4, pp. 65—68.
- Zimich V.V. Effektivnye magnezial’nye materialy stroitel’nogo naznacheniya s ponizhennoy gigroskopichnost’yu [Effective Low Water Absorption Magnesium Building Materials]. 2010.
- Nefed’ev A.P. Regulirovanie protsessov tverdeniya magnezial’nogo vyazhushchego [Regulation of Processes of Hardening of Magnesium Binding Materials]. Available at: http//www.cs-alternativa.ru/text/1954. Date of access: 19.02.2012.
- Pustovgar A.P. Effektivnost’ dobavok mikrokremnezema pri modifikatsii betona [Effectiveness of Microsilica Additives Used to Modify the Concrete] StroyPROFIl’ [Building Profile] Internet Journal. 2005, no. 8. Available at: http//stroyprofile.com/archive/1980. Date of access: 19.02.2012.
- Ustinova Yu.V., Nasonova A.E., Kozlov V.V. Issledovanie vzaimodeystviya kausticheskogo magnezita s dobavkoy mikrokremnezema [Research of Interaction between Caustic Magnesite and a Microsilica Additive]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 3, pp. 100—104.
- Shishelova T.I., Sozinova T.V., Konovalova A.N. Praktikum po spektroskopii. Voda v mineralakh [Workshop on Spectroscopy. Water in Minerals]. Moscow, Akademiya Estestvoznaniya [Academy of Natural Sciences] Publ., 2010.