RESEARCH OF BUILDING MATERIALS

CHARACTERISTICS OF MAGNETIC FIELD INDUCTION INSIDE A MODULE OF A MAGNETIC SEPARATOR

Vestnik MGSU 5/2013
  • Sandulyak Anna Aleksandrovna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Associate Professor, Department of Construction Materials; 7 (499) 183-32-29, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ershov Dmitriy Viktorovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Construction Materials; +7 (499) 183-32-29, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation.
  • Oreshkin Dmitriy Vladimirovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Chair, Department of Construction Materials; +7 (499) 183-32-29, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation.
  • Sandulyak Aleksandr Vasil’evich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Professor, Department of Construction Materials; +7 (499) 183-32-29., Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation.

Pages 103-111

Characteristics of magnetic separators are analyzed in the article. Magnetic separators are used to treat various construction materials. Unfortunately, the nature of the magnetic field, generated in their operating zone, is generally not taken into account by their designers. Academic publications fail to provide any detailed basic characteristics of the field induction emitted by magnetic separators in the course of their operation.Magnetic systems of any magnetic separator have a modular structure; they consist of several modules. Single and opposite magnetic elements are usually integrated into one module within a system having permanent magnets. If opposite magnetic elements are used, magnetic field intensity inside the module increases.In this study, characteristics of magnetic induction for single magnetic elements inside various modules of magnetic separators were assessed in a laboratory experiment. Similar characteristics of magnetic induction for single and twin (opposite) magnetic elements were compared. In the module consisting of two opposed magnetic elements, the magnetic field becomes stronger compared to the field of a single magnetic element. Magnetic induction in the module recedes as the distance between magnetic elements increases, because of the isolation of the field generated by the opposed magnetic elements.The authors have proven the feasibility and expediency of employment of the superposition principle used to obtain the resulting characteristics. It may be employed to substitute modeling by calculations.

DOI: 10.22227/1997-0935.2013.5.103-111

References
  1. Sandulyak A.V., Sandulyak A.A., Ershov D.V., Sandulyak D.A., Ershova V.A. Magnitnaya separatsiya syr’ya dlya proizvodstva stekla i keramiki. Problemy kontrolya zhelezistykh primesey [Magnetic Separation of Raw Materials for Glass and Ceramics Production. Problems of Control over Ferrous Admixtures]. Steklo i keramika [Glass and Ceramics]. 2012, no. 6, pp. 29—34.
  2. Konev N.N., Salo I.P., Mel’nik N.F., Gordiychuk V.N. Magnitnoe doobogashchenie kvartsevogo peska na stekol’nykh zavodakh [Magnetic Re-preparation of Quartz Sand at Glass Works]. Steklo i keramika [Glass and Ceramics]. 2003, no. 5, pp. 33—34.
  3. Konev N.N., Salo I.P., Lezhnev Yu.P., El’skiy V.P. Magnitnoe obogashchenie kvartsevogo peska dlya stekol’noy promyshlennosti [Magnetic Concentration of Quartz Sand for Glass Industry]. Steklo I keramika [Glass and Ceramics]. 2001, no. 2, pp. 21—22.
  4. Kotunov S.V., Vlasko A.V. Opyt obogashcheniya nerudnykh materialov s pomoshch’yu separatorov na osnove redkozemel’nykh postoyannykh magnitov [Practical Concentration of Non-metallic Materials Using Separators Based on Rare-earth Permanent Magnets]. Steklo i keramika [Glass and Ceramics]. 2007, no. 5, pp. 22—23.
  5. Zolotykh E.B., Mamina I.A., Paryushkina O.V. Izvlechenie magnitnykh mineralov iz stekol’nykh peskov Ushinskogo mestorozhdeniya [Extraction of Magnetic Minerals from Glass Sands of Ushinskiy Deposit]. Stroitel’nye materialy [Construction Materials]. 2007, no. 5, pp. 22—24.
  6. Zemlyacheva E.A., Kotunov S.V., Vlasko A.V. Magnitnoe obogashchenie syr’evykh materialov — novye tekhnologii [New Technologies for Magnetic Concentration of Raw Materials]. Steklo i keramika [Glass and Ceramics]. 2006, no. 5, pp. 34—35.
  7. Konev N.N., Salo I.P. Magnitnye separatory na postoyannykh magnitakh dlya obogashcheniya stekol’nogo i keramicheskogo syr’ya i materialov [Using Permanent Magnet Separators to Concentrate Glass and Ceramic Raw Materials]. Steklo i keramika [Glass and Ceramics]. 2003, no. 2, pp. 30—31.
  8. Bychkov E.V., Filatov V.D., Knyazev S.N., Konev N.N., Salo I.P. Ispol’zovanie magnitnoy separatsii pri proizvodstve elektroplavlenykh ogneuporov [Using Magnetic Separation to Produce Electrocast Refractories]. Steklo i keramika [Glass and Ceramics]. 2000, no. 9, pp. 42—43.
  9. Rayner J.G., Napier-Munn T.J. A Mathematical Model of Concentrate Solids Content for Wet Drum Magnetic Separator. Int. J. Miner. Process. 2003, no. 70, pp. 53—65.
  10. Todd P., Cooper R.P., Doyle J.F. Multistage Magnetic Particle Separator. Journal of Magnetism and Magnetic Materials. 2001, no. 225, pp. 294—300.
  11. Newns A., Pascoe R.D. Influence of Path Length and Slurry Velocity on the Removal of Iron from Kaolin Using a High Gradient Magnetic Separator. Minerals Engineering. 2002, no. 15, pp. 465—467.
  12. Nedelcu S., Watson J.H. Magnetic Separator with Transversally Magnetized Disk Permanent Magnets. Mineral Engineering, 2002, no. 15, pp. 355—359.
  13. Sandulyak A.V., Sandulyak A.A., Ershov D.V., Ershova V.A. O novykh printsipakh aktualizatsii reglamentov magnitokontrolya ferroprimesey syr’ya stroymaterialov (na primere kvartsevogo peska) [New Principles for Revision of Standards of Magnetic Control of Ferrous Admixtures of Raw Materials (exemplified by Quartz Sand)]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2013, no. 2, pp. 68—72.
  14. Maci?n V., Payri R, Tormos B., Montoro L. Applying Analytical Ferrography as a Technique to Detect Failures in Diesel Engine Fuel Injection Systems. Wear. 2006, 260, pp. 562—566.
  15. Roylance B.J. Ferrography — Then and Now. Tribology International. 2005, no. 38, pp. 857—862.
  16. Lukas M., Yurko R.J., Anderson D.P. Retrode Filter Spectroscopy: a Recently Improved Method to Direct and Analyze Large Wear and Contaminant Particles in Fluids. Journal of ASTM International. 2005, 2(3), pp. 187—198.
  17. Levy O., Elianz N. Failure Analysis and Condition Monitoring of an Open-loop Oil System Using Ferrography. Tribology Letters. 2009, pp. 1—13.
  18. Johnson M., Spurlock M. Best Practices: Strategic Oil Analysis: Setting the Test Slate. Tribology and Lubrication Technology. 2009, no. 65(5), pp. 20—22, 24—27.
  19. Eliaz N., Latanision R.M. Preventative Maintenance and Failure Analysis of Aircraft Components. Corrosion Reviews. 2007, no. 25(1-2), pp. 107—144.
  20. Wakeline G. Operations Engineering. Maintenance. In Order to Continue Running as Lubricated. Wear Particle Analyses Help in Condition Oriented Maintenance. CIT Plus. 2007, no. 10(1-2), pp. 36—37.
  21. Stodola J. The Results of Ferrography Tests and Their Evaluation. Tribo Test. 2001, no. 8(1), pp. 73—83.
  22. Krethe R. Possibilities and Limits of Ferrography. Tribologie und Schmierungstechnik. 2001, no. 48(4), pp. 48—54.
  23. Morovek L. Ferrography — Modern Maintenance Tool. Rock Products. 2000, no. 103(6), p. 24.
  24. Pinchuk E.L., Markova L.V. Magnitnye metody i ustroystva operativnoy diagnostiki tribosopryazheniy (obzor) [Magnetic Methods and Devices for Online Diagnostics of Tirbological Couplings (Overview)]. Trenie i iznos [Friction and Wear]. 2000, vol. 21, no. 2, pp. 197—204.
  25. Malyshev V.S., Konovalova I.N., Berestova G.I. Analiz chastits iznosa v sistemakh smazki dizel’nykh dvigateley metodom ferrografii [Using Ferrography to Study Wear Particles in Lubricate Systems of Diesel Motors]. Dvigatelestroenie [Propulsion Engineering]. 2002, no. 1, pp. 42—43.
  26. Sandulyak A.A., Polismakova M.N., Ershova V.A., Sandulyak A.V., Ershov D.V. Kharakteristiki zon zakhvata ferroprimesey v magnitnykh ochistnykh apparatakh [Characteristics of Ferrous Admixture Capture Zones in Magnetic Cleaning Machines]. Izvestiya MGTU “MAMI” [Proceedings of Moscow State Technical University “MAMI”]. 2009, no. 2(8), pp. 151—160.
  27. Sandulyak A.A., Polismakova M.V., Ershov D.V., Sandulyak A.V., Ershova V.A. Razlichnye podkhody k identifikatsii passivnykh zon v rabochem ob”eme magnitnogo separatora [Various Approaches to Identification of Passive Zones in the Work Space of a Magnetic Separator]. Zakonodatel’naya i prikladnaya metrologiya [Legislative and Applied Metrology]. 2010, no. 6, pp. 23—29.

Download

Analytical description of the coefficient of demagnetization for chains of cores of granulesin the filter matrix of a magnetic separator

Vestnik MGSU 9/2013
  • Sandulyak Anna Aleksandrovna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Associate Professor, Department of Construction Materials; 7 (499) 183-32-29, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 62-69

Particle capturing efficiency inside the filter matrix of a magnetic separator used in the treatment of ceramic suspensions, minerals, condensates, other liquids and gas depends immediately on the intensity of its magnetization capacity. Chains of granules of a filter matrix represent effective magnetization channels. Demagnetization intensity influences the magnetization intensity of the whole filter matrix and its separate chains that are also considered as magnetization channels. The pattern of calculation of demagnetization factor N (coefficient of demagnetization) for such channel magnets is of utmost academic interest, and this pattern is provided in this article. The author provides values for demagnetization factor N for quasi solid cores ofchains of granules having with various lengths L and diameters d (metal concentra-tion 0.78—0.99), if magnetized by the field having the intensity of Н =18–175 kА/m. It isproven that the values of N and √ L / d have an exponential relation.Earlier, the author identified that the values of N for the porous media having a cylindrical form depend on the ratio of the length of magnet L to its diameter D . It is proven that the values of N and those of √ L / D also have an exponential relation. Therefore, this reciprocal conformity of relations in respect of the demagnetization factor for samples of the granulated medium (consisting of chains of magnets-channels) and for cores of magnets-channels (having different porosity values) has confirmed the similarity of the demagnetization factor for magnets having substantial and high concentration of the ferromagnetic material. The analytical description (the formula) of the coefficient of demagnetization of channel cores is provided in the article.

DOI: 10.22227/1997-0935.2013.9.62-69

References
  1. Sandulyak A.V. Model' namagnichivaniya poristoy sredy [Model of Magnetization of the Porous Medium]. Zhurnal tekhnicheskoy fiziki [Journal of Applied Physics]. 1982, vol. 52, no. 11, pp. 2267—2269.
  2. Sandulyak A.V., Sandulyak A.A., Ershova V.A. Krivaya namagnichivaniya granulirovannoy sredy s pozitsiy modeli pokanal'nogo namagnichivaniya (novyy podkhod) [Granulated Media Magnetization Curve Simulated Using the Channel-by-channel Magnetization Model (a New Approach)]. Doklady Akademii nauk [Reports of the Academy of Sciences]. 2007, vol. 413, no. 4, pp. 469—471.
  3. Sandulyak A.V., Sandulyak A.A., Ershova V.A. K voprosu o modeli pokanal'nogo namagnichivaniya granulirovannoy sredy (s radial'nym profilem pronitsaemosti kvazisploshnogo kanala) [On the Issue of the Model of Channel-by-channel Magnetization of the Granulated Media (Having a Radial Profile of Permeability of the Quasi-continuous Channel)]. Zhurnal tekhnicheskoy fiziki [Journal of Applied Physics]. 2009, vol. 79, no. 5, pp. 140—143.
  4. Sandulyak A.A., Ershova V.A., Ershov D.V., Sandulyak A.V. O svoystvakh «korotkikh» granulirovannykh magnetikov s neuporyadochennymi tsepochkami granul: pole mezhdu granulami [On the Properties of “Short” Granulated Magnets Having Irregular Chains of Granules: Field between Granules]. Fizika tverdogo tela [Physics of Solids]. 2010, vol. 52, no. 10, pp. 1967—1974.
  5. Meylikhov E.Z., Farzetdinova R.M. Obobshchennaya teoriya srednego polya dlya reshetochnykh magnitnykh sistem i ferromagnetizm poluprovodnikov s magnitnymi primesyami [Generalized Theory of the Mean Field for Latticed Magnetic Systems of Ferromagnetism of Semiconductors Having Magnetic Admixtures]. Fizika tverdogo tela [Physics of Solids]. 2005, vol. 47, no. 6, pp. 1085—1091.
  6. Komogortsev S.V., Iskhakov R.S. Krivaya namagnichivaniya i magnitnye korreyatsii v nanotsepochke ferromagnitnykh zeren so sluchaynoy anizotropiey [Magnetization Curve and Magnetic Correlations in the Nano-scale Chain of Ferromagnetic Grains Having Random Anisotropy]. Fizika tverdogo tela [Physics of Solids]. 2005, vol. 47, no. 3, pp. 480—486.
  7. Andreenko A.S., Berezovets V.A., Granovskiy A.B. Inversnoe magnitosoprotivlenie v magnitnykh granulirovannykh kompozitakh (FeCoB)-(Al2O3) [Inverse Resistance to Magnetization inside Magnetic Granulated Composites (FeCoB)-(Al2O3)]. Fizika tverdogo tela [Physics of Solids]. 2003, vol. 45, no. 8, pp. 1446—1449.
  8. Zubarev A.Yu. Reologicheskie svoystva polidispersnykh magnitnykh zhidkostey. Vliyanie tsepochechnykh agregatov. [Rheological Properties of Polydisperse Magnetic Liquids. Influence of Chain Aggregates]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2001, vol. 120, no. 1(7), pp. 94—103.
  9. Granovskiy A.B., Bykov I.V., Gan'shina E.A. Magnitorefraktivnyy effekt v magnitnykh nanokompozitakh [Magnetorefractive Effect in Magnetic Nano-scale Composites]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2003, vol. 123, no. 6, pp. 1256—1265.
  10. Kashevskiy B.E., Prokhorov I.V. Magnitoforeticheskiy potentsial tsepochki ferromagnitnykh sharov v odnorodnom pole [Magnitophoresis Potential of a Chain of Ferromagnetic Balls in the Homogeneous Field]. Inzhenerno-fizicheskiy zhurnal [Journal of Engineering and Physics]. 2003, vol. 76, no. 4, pp. 30—35.
  11. Meylikhov E.Z., Farzetdinova R.M. Osnovnoe sostoyanie reshetok ferromagnitnykh granul s magnitodipol'nym vzaimodeystviem [Principal State of Lattices of Ferromagnetic Granules Exposed to Magnetic Dipolar Interaction]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2002, vol. 121, no. 4, pp. 875—883.
  12. Zubarev A.Yu., Iskakova L.Yu. K teorii fizicheskikh svoystv magnitnykh zhidkostey s tsepochechnymi agregatami [On the Theory of Physical Properties of Magnetic Liquids Having Chain Aggregates]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 1995, vol. 107, no. 5, pp. 1534—1551.
  13. Yurishchev M.A. Magnitnaya vospriimchivost' kvaziodnomernykh superantiferromagnetikov Izinga. Approksimatsii tsepochechnymi klasterami. [Magnetic Susceptibility of Ising Quazi-one-dimensional Super Ferrous Magnets. Approximations by Chain Clusters]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2005, vol. 128, no. 6 (12), pp. 1227—1242.
  14. Sandulyak A.V., Sandulyak A.A., Ershova V.A. Razmagnichivayushchiy faktor granulirovannogo magnetika (fil'truyushchey matritsy) kak zhguta kanalov namagnichivaniya [Demagnetization Factor of the Granulated Magnet (Filter Matrix) as the Strap of Magnetization Channels]. Izvestiya MGTU «MAMI» [News of Moscow State Technical University “MAMI”]. 2011, no. 1(11), pp. 210—216.
  15. Mattei J.-L., Le Floc'h M. Percolative Behaviour and Demagnetizing Effects in Disordered Heterostructures. Journal of Magnetism and Magnetic Materials. 2003, no. 257, pp. 335—345.
  16. Gorkunov E.S., Zakharov V.A., Chulkina A.A., and Ul’yanov A.I. Internal Demagnetization Factor for Porous Ferromagnets in Remagnetization Process. Russian Journal of Nondestructive Testing. 2004, vol. 40, no.1, pp. 1—7.
  17. Kifer I.I. Ispytaniya ferromagnitnykh materialov [Testing of Ferromagnetic Materials]. Moscow, Energiya Publ., 1969, 360 p.
  18. Chen D.-X., Pardo E., Sanchez A. Fluxmetric and Magnetometric Demagnetizing Factors for Cylinders. Journal of Magnetism and Magnetic Materials. 2006, no. 306, pp. 135—146.

Download

Results 1 - 2 of 2