-
Chernov Yuriy Tikhonovich -
Central Scientific Research Institute for Building Structures named after V.A. Kucherenko (V.A. Kucherenko CSRIBS)
Doctor of Technical Sciences, Professor, Central Scientific Research Institute for Building Structures named after V.A. Kucherenko (V.A. Kucherenko CSRIBS), 6 2nd Institutskaya St., Moscow, 109428, Russian Federation.
-
Petrov Ivan Aleksandrovich -
Moscow State University of Civil Engineering (MSUCE)
postgraduate student, Department of Structural Mechanics, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The algorithm of analysis of systems that have disruptable constrains is described in the article. The algorithm is based on the joint solving of two linear systems. The first linear system is the one that describes the processes before constraints get disrupted; the second linear system represents the system describing the processes in the aftermath of disruption of constrains with account for the influence of free vibrations. Free vibrations are caused by disrupted constraints. The proposed approach is more effective, if applicable to the systems that have their constraints disrupted only once. Also, the method describing disrupted constraints is considered as a special case of physical nonlinearity. Physical non-linearity adds some fictitious load to regular loads.
Formulas of equivalent static loads, with the help of which the systems are analyzed when constraints are disrupted, are generated. No inertial force is to be derived to obtain equivalent static loads. This is important in view of their application in dynamic analyses .
Analysis of the static system in the event of disrupted constraints is based on the equations derived by the authors. The result of the analysis represents an inverse linear relation of static loading and relative stiffness of the system with disrupted constraints. This means that the lower the stiffness of the system, the higher the static loading.
DOI: 10.22227/1997-0935.2012.4.98 - 101
References
- Chernov Yu.T. Vibratsii stroitel'nykh konstruktsiy [Vibrations of Engineering Structures]. Moscow, ASV Publ., 2011, 382 p.
- Timoshenko S.P., Yang D.Kh., Univer U. Kolebaniya v inzhenernom dele [Vibrations in Engineering]. Мoscow, Mashinostroenie [Machine Building],1985, 472 p.
- Chernov Yu.T. K raschetu sistem s vyklyuchayushchimisya svyazyami [About the Analysis of Systems That Have Disruptable Constraints]. Stroitel'naya mekhanika i raschet sooruzheniy [Structural Mechanics and Analysis of Structures]. 2010, no. 4, pp. 53—57.
-
Domarova Ekaterina Vladimirovna -
Moscow State University of Civil Engineering (MGSU)
postgraduate student, Department of Reinforced Concrete and Masonry Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
In the article the authors propose a simplified method of dynamic analysis of the resistance to progressive collapse of a fragment of the building bearing system with amplified floors. This method is based on representing the building bearing system as a dynamic model with a denumerable number of degrees of freedom, in which the resistance of the system is provided mainly by the behavior of the columns. The degrees of freedom number is determined by the number of floors «hanging» to amplified floors. Thecontribution of slabs in the total system resistance is not taken into account. Stress-strain state of the columns is determined by the non-linear resistance diagram, including three stages: elastic, elastic with cracks and plastic stage connected with plastic yield in the steel of the columns. The criterion of sustainability to the progressive collapse is relative strain of steel of the undestroyed columns. A numerical example of the calculation of the building resistance to progressive collapse in case of sudden destruction of one vertical element based on proposed theoretical method is offered. A model with two numbers of degrees was considered. The suggested method allows estimating the strength, deformability and stability of monolithic reinforced concrete frame buildings with separate amplified floors. In the future it is intended to complicate the model by the accounting for the influence of deformation and constructive solution of the slabs on the stiffness characteristics of the model as a system with a finite number of degrees of freedom.
DOI: 10.22227/1997-0935.2014.2.22-29
References
- Almazov V.O., Belov S.A., Nabatnikov A.M. Zashchita ot progressiruyushchego razrusheniya [Protection from Progressive Collapse]. Nauka i tekhnologii v promyshlennosti [Science and Technologies in the Manufacturing Industry]. 2005, no. 3, pp. 64—74.
- UFC 4-023-03. Unified Facilities Criteria (UFC). Design of Buildings to Resist Progressive Collapse. Department of Defense USA. 2005.
- GSA (2003b). Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects. General Services Administration.
- Nair R.S. Progressive Collapse Basics. North American Steel Construction Conference, 2004.
- Rekomendatsii po zashchite monolitnykh zhilykh zdaniy ot progressiruyushchego obrusheniya [Recommendations on the Protection of Monolithic Residential Buildings from Progressive Collapse]. Moscow, GUP NIATs Publ., 2005, 24 p.
- Rudenko D.V., Rudenko V.V. Zashchita karkasnykh zdaniy ot progressiruyushchego obrusheniya [Protection of Frame Buildings from Progressive Collapse]. Inzhenernostroitel'nyy zhurnal [Civil Engineering Journal]. 2009, no. 3, pp. 38—41.
- Sovremennoe vysotnoe stroitel'stvo [Modern High-rise Construction]. Monograph. Moscow, GUP «ITTs Moskomarkhitektury» Publ., 2007, 440 p.
- Xu Peifu, Fu Xiuyeyi, Wang Cuikun, Xiao Congzhen, editor Xu Peifu. Proektirovanie sovremennykh vysotnykh zdaniy [Design of Modern High-rise Buildings]. Moscow, ASV Publ., 2008, 467 p.
- Almazov V.O., Plotnikov A.I., Rastorguev B.S. Problemy soprotivleniya zdaniy progressiruyushchemu razrusheniyu [Problems of Building's Strength to Progressive Collapse]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 2, vol. 1, pp. 15—20.
- Timoshenko S.P. Kolebaniya v inzhenernom dele [Fluctuations in Engineering]. Nauka Publ., 1967, 444 p.
- Plotnikov A.I., Rastorguev B.S. Raschet nesushchikh konstruktsiy monolitnykh zhelezobetonnykh zdaniy na progressiruyushchee razrushenie s uchetom dinamicheskikh effektov [Calculation of the Bearing Structures of Monolithic Reinforced Concrete Buildings for the Progressive Collapse with Account for the Dynamic Effects]. Sbornik nauchnykh trudov Instituta stroitel'stva i arkhitektury MGSU [Collection of the Scientific Works of the Institute of Civil Engineering and Architecture MGSU]. Moscow, MGSU Publ., 2008, pp. 127—135.
-
Eremin Konstantin Ivanovich -
Moscow State University of Civil Engineering (MGSU)
Doctor of Technical Sciences, Professor, Department of Testing of Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Shul’ga Stepan Nikolaevich -
Moscow State University of Civil Engineering (MGSU)
postgraduate student, Department of Testing of Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
Basing on the damaging statistics obtained during the on-site inspections of industrial multi-span building structures with under-crane secondary trusses which have continuous lower plinth, we simulated the scenario of the most likely damage development of under-crane secondary trusses.The first scenario is the development of cracks along the total cross section of plinth. In the process of calculations we defined a real deformation scheme of plinth of under-crane secondary trusses with damage and its stress condition.The second scenario is the destruction of a support or support mounting unit to the lower plinth of under-crane secondary trusses. The destruction of this kind can occur as a result of a crack in a support or as a result of destruction of high-strength fasteners of a support to plinth. We discovered that a system with such damage is geometrically unchanged; there is no possibility of sudden destruction of both the under-crane secondary trusses and the entire building frame.The third scenario is the upper plinth separation from one of the walls of lower plinth of under-crane secondary trusses.The scenario is developed to define the viability of under-crane secondary trusses as a result of cracks in the area of wall junction with the upper shelf of lower plinth, their further development and the appearance of discrete cracks developing into a backbone along the entire span length of under-crane secondary trusses.Based on the calculations of the stress strain state of under-crane secondary trusses with damages in the emergency nature in a separate span of the lower plinth and a truss member, we estimated the viability of structure. The analysis of viability limits makes it possible to find the measures of collapse preventing and avoid possible victims.
DOI: 10.22227/1997-0935.2014.2.30-38
References
- Eremin K.I., Shul’ga S.N. Napryazhenno-deformirovannoe sostoyanie uzlov podkranovo-podstropil’nykh ferm [The Stress-strain State of the Knots of Crane Farms]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2012, no. 6, pp. 40—43.
- Eremin K.I., Shul’ga S.N. Zakonomernost' povrezhdeniy podkranovo-podstropil'nykh ferm na stadii ekspluatatsii [Regularity of the Damages of Crane Secondary Trusses During their Exploitation]. Promyshlennoe I grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2013, no. 4, pp. 27—29.
- Pinto J.M.A., Pujol J.C.F., Cimini C.A. Probabilistic Cumulative Damage Model to Estimate Fatigue Life. Fatigue & Fracture of Engineering Materials & Structures. 2013, vol. 37, no. 1, pp. 85—94. DOI: 10.1111/ffe.12087.
- Fell B.V., Kanvinde A.M. Recent Fracture and Fatigue Research in Steel Structures. STRUCTURE magazine. 2009, no. 2, pp. 14—17.
- Artyukhov V.N., Shcherbakov E.A., Goritskiy V.M., Shneyderov G.R. O sostoyanii podkranovykh konstruktsiy korpusa konverternogo proizvodstva OAO «Severstal'» [On the Crane Secondary Truss State of the Body Structure of Converter Process in «Severstal’»]. Promyshlennoe I grazhdanskoe stroitel’stvo. [Industrial and Civil Engineering]. 2001, no. 6, pp. 31—34.
- Br?ckner A., Munz D. Prediction of Failure Probabilities for Cleavage Fracture from the Scatter of Crack Geometry and of Fracture Toughness Using Weakest Link Model. Engineering Fracture Mechanics. 1983, vol. 18, no. 2, pp. 359—375. DOI: 10.1016/0013-7944(83)90146-7.
- Kawasaki T., Nakanishe S., Sawaki I. Tangue Crack Growth. Engineering Fracture Mechanics. 1975, no. 3, pp. 12—18.
- Smith I.F.C., Smith R.A. Defects and Crack Shape Development in Fillet Welded Joints. Fatigue of Engineering Materials and Structures. 1982, vol. 5, no. 2, pp. 151—165. DOI: 10.1111/j.1460-2695.1982.tb01231.x.
- Robin C., Louah M., Pluvinage G. Influence of an Overload on the Fatigue Crack Growth in Steels. Fatigue and Fracture of Engineering Materials and Structures. 1983, vol. 6, no. 1, ðð. 1—13. DOI: 10.1111/j.1460-2695.1983.tb01135.x.
- Shuter D.M., Geary W. Some Aspects of Fatigue Crack Growth Retardation Behaviour Following Tensile Overloads in a Structural Steel. Fatigue and Fracture of Engineering Materials and Structures. 1996, vol.19, no. 2—3, pp.185—199. DOI: 10.1111/j.1460-2695.1996.tb00958.x.
-
Harutyunyan Gevorg Harutyunovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
postgraduate student, Scientific and Educational Center “Test of Structures”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
Beginning with the 20th century metal structures are widely used in the construction branch in Russia. The reason for it was in the development of calculation methods of structures. Beginning with 1930 and till now a substantial number of the industrial buildings (about 90 %) of production plants have been built of metal structures. The essential part of them - 20…60 % of the whole volume - has block coverings consisting of bearing and braced elements. At the present time the data on the operation duration of industrial structures is not systemized throughout Russia. This data may serve as one of characteristic factors for estimating safety operation level, because while the operation term increases, the wear also increases (mechanical damages), which influences the bearing capacity of the structures. The following article examines the collapse of industrial building coverings that may be accompanied not only by material losses, but also by fatal accidents. Statistical data of damageability of trusses and their elements are presented; the consequences of collapse are examined. The average life time of trusses is determined which is serving as a criteria that characterizes damage accumulation. The nature of the collapse of block coverings is revealed which, in most cases, may be classified as progressive.
DOI: 10.22227/1997-0935.2015.9.16-27
References
- Mel’nikov N.P., editor. Metallicheskie konstruktsii. Spravochnik proektirovshchika [Metal Structures (Reference Book of a Designer)]. 2nd edition, revised. Moscow, Stroyizdat Publ., 1980, 776 p. (In Russian)
- Gubanov V.V., Moskalenko V.I. Opyt likvidatsii рosledstviy avarii promyshlennogo zdaniya [Elimination of the Consequences of an Industrial Building Failure]. Metallicheskie konstruktsii [Metal Structures]. 2008, vol. 14, no. 3, pp. 181—188. (In Russian)
- Eremin K.I., Matveyushkin S.A. Elektronnaya pasportizatsiya zdaniy i sooruzheniy [Electronic Certification of Buildings and Structures]. Predotvrashchenie avariy zdaniy i sooruzheniy : sbornik nauchnukh trudov [Prevention of Accidents of Buildings and Structures. A Collection of Scientific Papers]. Moscow, 2008, pp. 5—14. (In Russian)
- Nezhdanov K.K., Zhukov A.N. Analiz sostoyaniya i prichin obrusheniy stroitel’nykh konstruktsiy v promyshlennykh zdaniyakh [State and Reasons of Structures Damages in Industrial Buildings]. Regional’naya arkhitektura i stroitel’stvo [Regional Architecture and Construction]. 2011, no. 1, pp. 80—84. (In Russian)
- Permyakov M.B. Analiz avariy zdaniy i sooruzheniy promyshlennykh predpriyatiy [The Analysis of Accidents of Buildings and Constructions in Industrial Enterprises]. Predotvrashchenie avariy zdaniy i sooruzheniy : sbornik nauchnukh trudov [Prevention of Accidents of Buildings and Structures. A Collection of Scientific Papers]. Moscow, 2008, pp. 39—43. (In Russian)
- Gruzinova M.A., Tavkin’ A.A. Bezopasnost’ sooruzheniy pri prirodnykh i tekhnogennykh dinamicheskikh vozdeystviyakh [Safety of Constructions During Natural and Man-Induced Dynamic Influences]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2001, no. 4, pp. 42—44. (In Russian)
- Eremin K.I., Makhutov N.A., Pavlova G.A., Shishkina N.A. Reestr avariy zdaniy i sooruzheniy 2001—2010 godov [The Register of Accidents of Buildings and Structures from 2001 to 2010]. Moscow, 2011, 320 p. (In Russian)
- Eremin K.I., Matveyushkin S.A. Osobennosti ekspertizy i nerazrushayushchego kontrolya stroitel’nykh metallicheskikh konstruktsiy [The Characteristics of Examination and Nondestructive Inspection of Building Metallic Structures]. Predotvrashchenie avariy zdaniy i sooruzheniy : sbornik nauchnukh trudov [Prevention of Accidents of Buildings and Structures. A Collection of Scientific Papers]. Moscow, 2009, no. 8, pp. 5—14. (In Russian)
- Ponomarev V.N., Travush V.I., Bondarenko V.M., Eremin K.I. O neobkhodimosti sistemnogo podkhoda k nauchnym issledovaniyam v oblasti kompleksnoy bezopasnosti i predotvrashcheniya avariy zdaniy i sooruzheniy [On the Need of System Approach Towards Scientific Research in the Field of Complex Security and Prevention of Accidents of Buildings and Structures]. Monitoring. Nauka i bezopasnost’ [Monitoring: Science and Safety]. 2014, no. 1 (13), pp. 4—12. Available at: http://e.np-monitoring.ru/2014/2014-1(13).pdf. Date of access: 20.03.2015. (In Russian)
- Shishkina N.A. Otnoshenie obshchestvennosti k ekspluatiruemym stroitel’nym ob
- Kikin A.I., Vasil’ev A.A., Koshutin B.N., Uvarov B.Yu., Vol’berg Yu.L. Povyshenie dolgovechnosti metallicheskikh konstruktsiy promyshlennykh zdaniy [Increase of Longevity of Metallic Structures of Industrial Buildings]. 2nd edition, revised. Moscow, Stroyizdat Publ., 1984, 301 p. (In Russian)
- Lashchenko M.N. Avarii metallicheskikh konstruktsiy zdaniy i sooruzheniy [Accidents of Metallic Structures of Buildings and Constructions]. Leningrad, Stroyizdat Publ., 1969, 184 p. (In Russian)
- Belyaev B.I., Kornienko S.V. Prichiny avariy stal’nykh konstruktsiy i sposoby ikh ustraneniya [Causes of Accidents of Steel Structures and Means of Their Elimination]. Moscow, Stroyizdat Publ., 1968, 208 p. (In Russian)
- Shkinev A.N. Avarii v stroitel’stve [Accidents in Construction]. 4th edition, revised. Moscow, Stroyizdat Publ., 1984, 320 p. (In Russian)
- Augustin Ya., Shledzevskiy E. Avarii stal’nykh konstruktsiy [Accidents of Steel Structures]. Transl. from Polish. Moscow, Stroyizdat Publ., 1978, 177 p. (In Russian)
- Eremin K.I., Matveyushkin S.A., Pavlova G.A. Obzor sovremennykh avariy zdaniy i sooruzheniy. Analiz avariynosti zdaniy i sooruzheniy. Prichiny avariynogo razrusheniya konstruktsiy [Overview of Contemporary Accidents of Buildings and Constructions; Analysis of the Accident Rate of Buildings and Constructions, the Causes of Accidental Collapse]. Bezopasnost’ ekspluatiruemykh zdaniy i sooruzheniy [Safety of Exploited Buildings and Constructions]. Moscow, 2011, pp. 3—45. (In Russian)
- Eremin K.I., Shishkina N.A. Obzor avariy zdaniy i sooruzheniy, proizoshedshikh v 2010 godu [Review of Accidents of Buildings and Structures, Which Occurred in 2010]. Predotvrashchenie avariy zdaniy i sooruzheniy : sbornik nauchnukh trudov [Prevention of Accidents of Buildings and Structures. A Collection of Scientific Papers]. Moscow, 2011, no. 10, pp. 3—23. (In Russian)
- ASCE 7—02. Minimum Design Loads for Buildings and Other Structures. 2002 ed. American Society of Civil Engineers. Reston, VA, 2002, 376 p.
- Almazov V.O. Proektirovanie sooruzheniy s uchetom avariynykh vozdeystviy [The Design of Constructions Taking into Account the Accident Effects]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineers]. 2010, no. 1, Special Issue, pp. 151—159. (In Russian)
- Eremeev P.G. Predotvrashchenie lavinoobraznogo (progressiruyushchego) obrusheniya nesushchikh konstruktsiy unikal’nykh bol’sheproletnykh sooruzheniy pri avariynykh vozdeystviyakh [Prevention of Progressive Collapse of Load-Bearing Structures of Unique Large-Span Constructions under Emergency Effects]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 2006, no. 2, pp. 65—72. (In Russian)
- Taylor D.A. Progressive Collapse. Canadian Journal of Civil Engineering. Dec. 1975, vol. 2, no. 4, pp. 517—529. DOI: http://dx.doi.org/10.1139/l75-047.
- Allen D.E., Schriever W.R. Progressive Collapse. Abnormal Loads and Building Codes. Proc. Am. Soc. Civ. Eng. National Meeting on Struct. Eng., Clevelend, Ohio. Apr. 1972, pp. 21—47.
- Leyendecker E.V., Burnett E.F.P. The Incidence of Abnormal Loading in Residential Buildings. NBS Building Science Series 89, U.S. Department of Commerce, National Bureau of Standards, Washington D.C., 1976, 30 p.
- Starossek U. Typology of Progressive Collapse. Engineering Structures. 2007a, vol. 29, no. 9, pp. 2302—2307.
-
Agafonova Vera Valer'evna -
Moscow State University of Civil Engineering (MSUCE)
postgraduate student, Department of Technical Regulations, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
In view of persistent threats of terrorist attacks, protection of high-rise and unique buildings and structures from the above impacts remains one of the top-priority objectives of safety and security assurance projects. The author provides an overview of blast effects on a reinforced concrete column simulated through the employment of ANSYS software package. Possible patterns of the effects are considered. The semulation is performed in three sequent stages. At Stage 1, the initial stress-strain state of the column is simulated. At Stage 2, non-stationary gas dynamics of the explosion of 50 kg of TNT and the stress-strain state of the column are simulated. At Stage 3, destruction of the column, damaged by the explosion, is analyzed. The time period of complete destruction of the column after the explosion is ~ 100 ms. Numerical simulation of the environment by LS-DYNA software system assures accurate calculations; therefore, this software programme may be used to develop reliable actions aimed at reduction of effects of the explosion in order to prevent the progressive collapse.
DOI: 10.22227/1997-0935.2012.7.109 - 113
References
- Telichenko V.I., Roytman V.M., Slesarev M.Yu., Shcherbina E.V. Osnovy kompleksnoy bezopasnosti stroitel’stva [Basics of Comprehensive Safety of Construction]. Moscow, ASV Publ., 2011, 168 p.
- Telichenko V.I., Roytman V.M. Obespechenie stoykosti zdaniy i sooruzheniy pri kombinirovannykh osobykh vozdeystviyakh s uchastiem pozhara — bazovyy element sistemy kompleksnoy bezopasnosti. Povyshenie bezopasnosti zdaniy i sooruzheniy v protsesse stroitel’stva i ekspluatatsii (19 May 2010) [Assurance of Resistancce of Buildings and Structures to Special Complex Impacts Inclusive of Fires as the Basic Element of the System of Comprehensive Safety. Improvement of Safety of Buildings and Structures in the course of Construction and Maintenance]. Proceedings of the 1st National Congress for Comprehensive Safety in Civil Engineering 2010, 18—21 May 2010, Moscow, no. 9.
- Roytman V.M. Stoykost’ zdaniy i sooruzheniy protiv progressiruyushchego obrusheniya pri kombinirovannykh osobykh vozdeystviyakh s uchastiem pozhara [Resistance of Buildings and Structures to Progressive Collapse, If Exposed to Combined Special Impacts Inclusive of the Fire]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, special issue no. 4, 37—59.
- Roytman V.M. Osnovy pozharnoy bezopasnosti vysotnykh zdaniy [Basics of Fire Safety of High-Rise Buildings]. Moscow, MGSU, 2009, 107 p.
- Telichenko V.I. Kontseptsiya zakonodatel’nogo obespecheniya bezopasnosti sredy zhiznedeyatel’nosti [Concept of the Legislative Framework of Safe Environment]. Proceedings of the General Meeting of the Russian Academy of Architecture and Civil Engineering Sciences, 2006, no. 2, vol. 1, pp. 236—241.
- Belostotskiy A.M., Dubinskiy S.I., Aul A.A. Verifikatsionnyy otchet po programmnomu kompleksu ANSYS Mechanical [Verification Report of ANSYS Mechanical Software] (4 volumes). StaDiO Research Centre, MSUCE, 2009.
- Roytman V.V., Pasman H.J., Lukashevich I.E. The Concept of Evaluation of Building Resistance against Combined Hazardous Effects “Impact-Explosion-Fire” after Aircraft Crash. Fire and Explosion Hazards. Proceedings of the Fourth International Seminar, 2003, Londonderry, NI, UK, pp. 283—293.
- Structural Analysis Guide, Documentation for ANSYS, Release 14. 2012.
- ANSYS Parametric Design Language Guide. ANSYS Release 12.1 Documentation. Canonsburg, ANSYS Inc., 2009.
- Rastorguev B.S., Plotnikov A.I., Khusnutdinov D.Z. Proektirovanie zdaniy i sooruzheniy pri avariynykh vzryvnykh vozdeystviyakh [Design of Buildings and Structures with Account for Exposure to Blast Effects]. Moscow, ASV Publ., 2007, 152 p.
-
Petrov Ivan Aleksandrovich -
Moscow State University of Civil Engineering (MSUCE)
postgraduate student, Department of Structural Mechanics, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The objective of this article is to present the analysis of a double-span beam that has disabled
constraints, including its analysis in the state of static equilibrium and in the event of forced
vibrations. Hereinafter, the original system is entitled System 1, while the system that has disabled
constraints is System 2.
The analysis is performed in furtherance of the following pattern. First, System 1 static analysis
and System 2 static and dynamic properties analysis is executed. Later, we calculate the deflection
and the internal force of System 2 as the consequence of disabled constraints. By comparing
the process of static equilibrium of System 2 and the process of free vibrations of System 2, we
identify that the moment of flexion in the mid-span increases by 85 %, while the support moment
increases by 66 %.
The analysis of the system that has disabled constraints in the process of forced vibrations is
the same as the analysis demonstrated hereinbefore, except that the initial condition is calculated
differently. By disabling constraints, we can both reduce and increase the peak values of displacement
of the system in the process of forced vibrations.
This research proves that the proposed method can be used to calculate defl ection and the
internal force of static and dynamic systems having disabled constraints. That can be very important
in evaluation of the safety of structures after destruction of their individual elements.
DOI: 10.22227/1997-0935.2012.9.148 - 154
References
- Chernov Yu.T. K raschetu sistem s vyklyuchayushchimisya svyazyami [About the Analysis of Systems That Have Disrupting Constraints]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Analysis of Structures]. 2010, no. 4, pp. 53—57. Available at: http://elibrary.ru. Date of access: June 18, 2012.
- Chernov Yu.T., Petrov I.A. Opredelenie ekvivalentnykh staticheskikh sil pri raschete sistem s vyklyuchayushchimisya svyazyami [Identification of Equivalent Static Forces as part of Analysis of Systems That Have Disrupting Constraints]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 4, pp. 98—101. Available at: http://vestnikmgsu.ru. Date of access: June 18, 2012.
- Karpilovskiy V.S., Kriksunov E.Z., Malyarenko A.A. Vychislitel’nyy kompleks SCAD [SCAD Computer System]. Moscow, ASV Publ., 2008, 592 p.
- Timoshenko S.P., Yang D.Kh., Univer U. Kolebaniya v inzhenernom dele [Vibrations in Engineering]. Moscow, Mashinostroenie Publ., 1985, 472 p.
- Darkov A.V., Shaposhnikov N.N. Stroitel’naya mekhanika [Structural Mechanics]. Moscow, Vyssh. shk. publ., 1986, 607 p.
- Chernov Yu.T. Vibratsii stroitel’nykh konstruktsiy [Vibrations of Engineering Structures]. Moscow, ASV Publ., 2011, 382 p.
- Salvatore Mangano. Mathematica Cookbook. O’Reilly Media, 2010, 830 p.
- Perel’muter A.V., Kriksunov E.Z., Mosina N.V. Realizatsiya rascheta monolitnykh zhilykh zdaniy na progressiruyushchee (lavinoobraznoe) obrushenie v srede vychislitel’nogo kompleksa «SCAD Office» [Analysis of a Building Consisting of Cast-in-situ Reinforced Concrete to Resist Progressive Collapse Using «SCAD Offi ce» Computer System]. Inzhenerno-stroitel’nyy zhurnal [Journal of Civil Engineering]. 2009, no. 2, pp. 13—18. Available at: http://engstroy.spb.ru. Date of access: June 18, 2012.