DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

The application of the finite element method for the low-cycle fatigue calculation of the elementsof the pipelines’ fixed support construction for the areas of above-ground routing of the oil pipeline «Zapolyarye — NPS „Pur-Pe“»

Vestnik MGSU 2/2014
  • Surikov Vitaliy Ivanovich - Research Institute of Oil and Oil Products Transportation (NII TNN) Deputy Director General for the Technology of Oil and Oil Products Transportation, Research Institute of Oil and Oil Products Transportation (NII TNN), 9-5, 2 Verhniy Mikhaylovskiy proezd, 115419, Moscow, Rus- sian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bondarenko Valeriy Vyacheslavovich - Joint stock company “Konar” (JSC “Konar”) Candidate of Technical Sciences, Director General, Joint stock company “Konar” (JSC “Konar”), 4b Prospect Lenina, 454038, Chelyabinsk; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Korgin Andrey Valentinovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Supervisor, Scientific and Educational Center of Constructions Investigations and Examinations, Department of Test of Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zotov Mikhail Yur'evich - Institute of Trunk Oil Pipelines Design Giprotruboprovod head, Department of Justifying Calculations, Institute of Trunk Oil Pipelines Design Giprotruboprovod, 24, bldg.1 Vavilova str. 119334, Moscow, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bogach Andrey Anatol'evich - Research Institute of Oil and Oil Products Transportation (NII TNN) Candidate of Physical and Mathematical Sciences, chief specialist, Department of Strength and Stability Calculation of Pipelines and Main Oil Pipelines Equipment, Research Institute of Oil and Oil Products Transportation (NII TNN), 9-5, 2 Verhniy Mikhaylovskiy proezd, 115419, Moscow, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 47-56

The present article studies the order of performing low-cycle fatigue strength calculation of the elements of the full-scale specimen construction of the fixed support DN 1000 of the above-ground oil pipeline “Zapolyarye — Purpe” during rig-testing. The calculation is performed with the aim of optimizing the quantity of testing and, accordingly, cost cutting for expensive experiments. The order of performing the calculation consists of two stages. At the first stage the calculation is performed by the finite element method of the full-scale specimen construction’s stressed-deformed state in the calculation complex ANSYS. Thearticle describes the main creation stages of the finite element calculation model for the full-scale specimen in ANSYS. The calculation model is developed in accordance with a three-dimensional model of the full-scale specimen, adapted for rig-testing by cyclic loads. The article provides the description of the full-scale specimen construction of the support and loading modes in rig-testing. Cyclic loads are accepted as calculation ones, which influence the support for the 50 years of the oil pipeline operation and simulate the composite impact in the process of the loads’ operation connected to the changes in the pumping pressure, operational bending moment. They also simulate preloading in the case of sagging of the neighboring free support. For the determination of the unobservable for the diagnostic devices defects impact on the reliability of the fixed support and welding joints of the fixed support with the oil pipeline by analogy with the full-scale specimen, artificial defects were embedded in the calculation model. The defects were performed in the form of cuts of the definite form, located in a special way in the spool and welding joints. At the second stage of calculation for low-cycle fatigue strength, the evaluation of the cyclic strength of the full-scale specimen construction’s elements of the fixed support was performed in accordance with the requirements of Russian State Standard GOST R 52857.6—2007 on the basis of the overall and local stress condition, received according to the results of the calculation in ANSYS. In accordance with the results of the conducted work the conclusion was drawn about fulfilling the standard requirements for the low-cycle fatigue strength of the developed full-scale specimen of the support. Therefore, the application of the modern approaches to the numerical modeling of the fixed support construction operation allowed minimizing the quantity of full-scale tests of the specimen with the cyclic load, escaping the excessive conservatism in evaluation of the cyclic strength and developing of the optimal for the metal intensity construction.

DOI: 10.22227/1997-0935.2014.2.47-56

References
  1. Basov K.A. ANSYS: spravochnik pol'zovatelya [ANSYS. The User's Guide]. Moscow, DMK Press Publ., 2005, 640 p.
  2. Bykov L.I., Avtakhov Z.F. Otsenka vliyaniya usloviy na rabotu balochnykh truboprovodnykh sistem [Estimating the Conditions Influence on the Beam Pipelines Operation]. Izvestiya vuzov. Neft' i gaz [News of the Universities of Higher Education. Oil and Gas]. 2003, no. 5, pp. 79—85.
  3. Kazakevich M.I., Lyubin A.E. Proektirovanie metallicheskikh konstruktsiy nadzemnykh promyshlennykh truboprovodov [Metal Structures Design for Above-ground Industrial Pipelines]. 2nd Edition. Kiev, Budivel'nik Publ., 1989, 160 p.
  4. Petrov I.P., Spiridonov V.V. Nadzemnaya prokladka truboprovodov [Above-ground Pipelining]. Moscow, Nedra Publ., 1973, 472 p.
  5. Podgornyy A.N., Gontarovskiy P.P., Kirkach B.N. Zadachi kontaktnogo vzaimodeystviya elementov konstruktsiy [The Tasks of Contact Interaction of a Construction Elements]. Kiev, Naukova dumka Publ., 1989, 232 p.
  6. Seleznev V.E., Aleshin V.V., Pryalov S.N. Osnovy chislennogo modelirovaniya magistral'nykh truboprovodov [Intro to Numerical Simulations of Major Pipelines]. Moscow, KomKniga Publ., 2005, 496 p.
  7. Seleznev V.E., Aleshin V.V., Pryalov S.N. Matematicheskoe modelirovanie magistral'nykh truboprovodnykh sistem: dopolnitel'nye glavy [Mathematic Simulation of Major Pipeline Systems: Additional Chapters]. Moscow, MAKS Press Publ., 2009, 356 p.
  8. Crisfield M.A. Non-linear Finite Element Analysis of Solids and Structures. In two volumes. John Wiley & Sons, Chichester, 2000.
  9. Madenci Erdogan, Guven Ibrahim. The Finite Element Method and Applications in Engineering Using ANSYS. Springer, 2005, 686 p.
  10. Lawrence K.L. ANSYS Workbench Tutorial, Structural & Thermal Analysis Using the ANSYS Workbench Release 13. Enviroment. Schroff Development Corporation, 2011.
  11. Lawrence K.L. ANSYS Tutorial Release 13. Schroff Development Corporation, 2011.
  12. Surikov V.I., Varshitskiy V.M., Bondarenko V.V., Korgin A.V., Bogach A.A. Primenenie metoda konechnykh elementov pri raschete na prochnost' opor truboprovodov dlya uchastkov nadzemnoy prokladki nefteprovoda «Zapolyar'e — NPS “Pur-Pe”» [Using Finite Element Method in the Process of Strength Calculation for the Pipeline Supports in Above-Ground Area of "Zapolyar'e — NPS "Pur-Pe" Oil Pipeline]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 1, pp. 66—74.

Download

Results 1 - 1 of 1