DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Construction solutions for the exterior walls in the process of increasing the width of residential buildings of brownfield construction in seismic hazardousand dry hot conditions of Central Asia

Vestnik MGSU 2/2014
  • Usmonov Shukhrat Zaurovich - Khujand Politechnic Institute of Tajik Technical University by academic M. Osimi (PITTU); Moscow State University of Civil Engineering (MGSU) Senior Lecturer, Khujand Politechnic Institute of Tajik Technical University by academic M. Osimi (PITTU); Moscow State University of Civil Engineering (MGSU), 226 Lenina st., Khujand, 735700, Tajikistan; applicant, Department of Architecture of Civil and Industrial Buildings; 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 57-64

The main object of this study is the reconstruction, renovation and modernization of the housing built in the period 1975—1985. These buildings have low energy efficiency due to the poor thermal insulation properties of the walls. These apartments do not meet the necessary requirements for year round warmth and comfort.Reconstruction is more preferable, than new-build, because of the cost saving for the land acquisition. Reconstruction is generally 1.5 times cheaper than new-build with 25—40 % reduced cost on building materials and engineering infrastructure.Increasing the width of the apartment blocks from 12 to 15 m can save 9—10 % on the consumption of thermal energy for heating and reduce the m2 construction cost by 5.5—7.0 %. In—5-9 storey high-rise buildings the savings are 3—5 %.Therefore, the width of the apartment block should preferably be between 9—12 m but could be extended to 18 m. The depth of the apartments themselves will be 5.4 — 6.0 —7.2 or 9.0 m. During the reconstruction of 5-storey residential buildings (Building Type105) in a seismic zone, an increase in the width of the block and the lateral stiffness of the building is achieved by building a new reinforced concrete (RC) frame on both sides of the building with a depth of between 2 and 6 m. This technique is especially effective in increasing the seismic resistance of the building. Self-supporting walls of cellular concrete blocks (density 600 kg/m3 and a thickness of 300 mm) are constructed on the outside of the frame, taking care to avoid cold bridges.Model studies have shown that in the conditions of hot-arid climate the thickness of the air gap in a ventilated facade does not significantly change the cooling-energy consumption of the building, and heating consumption is significantly increased. The building's energy consumption is most influenced by the volume of the air in the air gap. By increasing the ventilation rate in the air gap, the energy consumption for building heating increases and for cooling — slightly decreases. For the conditions of the northern region of Tajikistan, the recommended optimal thickness of the air gap with ventilation is 60 mm.

DOI: 10.22227/1997-0935.2014.2.57-64

References
  1. Bulgakov S.N. Energosberegayushchie tekhnologii vtorichnoy zastroyki rekonstruiruemykh zhilykh kvartalov [Energy-saving Technologies for Brownfield Construction of the Reconstructed Residential Districts]. ABOK. 1998, no. 2, pp. 5—11.
  2. Bulgakov S.N. Energoeffektivnye stroitel'nye sistemy i tekhnologii [Energy-efficient Construction Systems and Technologies]. ABOK. 1999, no. 2, pp. 5—11.
  3. Tabunshchikov Yu.A., Livchak V.I., Gagarin V.G., Shilkin N.V. Puti povysheniya energoeffektivnosti ekspluatiruemykh zdaniy [Ways to Increase Energy Efficiency of the Operating Buildings]. ABOK. 2009, no. 5, pp. 38—47.
  4. Nigmatov I.I. Proektirovanie zdaniy v regionakh s zharkim klimatom s uchetom energosberezheniy, mikroklimata i ekologii [Design of Buildings in Hot Climate Regions with Account for Energy Efficiency, Microclimate and Ecology]. Dushanbe, Irfon Publ., 2007, 303 p.
  5. Agentstvo po statistike pri Prezidente Respubliki Tadzhikistan. Staticheskie dannye po stroitel'stvu [Statistical Agency under the President of the Republic of Tadjikistan. Statistical Data on Construction]. Available at: http://www.stat.tj/ru/. Date of access: 01.12.2013.
  6. Usmonov Sh.Z. Modelirovanie energeticheskikh zatrat na otoplenie i okhlazhdenie 5-etazhnogo zhilogo doma i otsenka temperaturnykh usloviy po indeksam teplovogo komforta PMV i PPD [Simulation of Energy Demand for Heating and Cooling of a 5-Storey Residential Building and Evaluation of Thermal Conditions Based on PMV and PPD Thermal Comfort Indices]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 10, pp. 216—229.
  7. Rekomendatsii po proektirovaniyu i primeneniyu fasadnoy sistemy «Polialpan» dlya stroitel'stva i rekonstruktsii zdaniy [Recomendations on the Design and Use of the Facade System "Polialpan" for Construction and Reconstruction of Buildings]. Moscow, TsNIIEP zhilishcha Publ., 2009, 136 p.
  8. Gagarin V.G., Kozlov V.V., Tsykanovskiy E.Yu. Puti povysheniya energoeffektivnosti ekspluatiruemykh zdaniy [Ways to Increase Energy Efficiency of the Operating Buildings]. ABOK. 2004, no. 2, pp. 20—27.

Download

Induced activity of a concrete radiation shielding of cyclotron canyons on the stage of decommissioning

Vestnik MGSU 10/2014
  • Aliev Taib Yunusovich - design and construction company GC RANSTROY design engineer, design and construction company GC RANSTROY, 21-1 Akademika Pontryagina str., Moscow, 117041, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Engovatov Igor' Anatol'evich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Construction of Thermal and Nuclear Power Plants, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-26-74; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Lavdanskiy Pavel Aleksandrovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Construction of Thermal and Nuclear Power Plants, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Solov'ev Vitaliy Nikolaevich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Construction of Thermal and Nuclear Power Plants, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 106-113

One the new stage on nuclear medicine development there is a need to solve a number of tasks. The choice of radiation shield materials is an important task, because they to a large extend determine radiation safety in the process of operation and volumes of radioactive emissions in case of decommissioning. The stage of decommissioning is final in operation life of such installations. In the article the authors present an estimation of the producer of cyclotrons PETtrace 880 on radionuclides, which arise in the composition of concrete biological shield of cyclotron after decommissioning in Pet-centre of Russian Oncologic Scientific Center named after N.N. Blokhin. It was shown, that the data of the producer can lead to underestimating the volumes of radioactive waste. The tasks for further investigation on the problem are outlined. The authors defined the role of induced activity estimation on the stage of design and decommissioning of the cyclotrons for radiological safety. For designed objects the elemental composition of protecting constructions should be included in design documents. The choice of the composition should take in account the activation capacity of doping and tracing elements. The adequate estimation of induced activity should result in optimization of design and construction solutions. Such an approach will allow realizing the future stage of decomposition in more efficient and safe way by reducing radioactive waste and dose costs for staff and population.

DOI: 10.22227/1997-0935.2014.10.106-113

References
  1. Kuz'mina N.B. Chto takoe yadernaya meditsina [What is Nuclear Medicine]. Moscow, NIYaU MIFI Publ., 2012, 32 p. (in Russian)
  2. Kostylev V.A. Gor'kaya pravda o «modernizatsii» nashey atomnoy meditsiny [Bitter Truth on “Modernization” of our Noclear Medcine]. Meditsinskaya fizika [Medical Physics]. 2010, no. 4 (48), pp. 82—93. (in Russian)
  3. Wernick M.N., Aarsvold J.N., editors. Emission Tomography: The Fundamentals of PET and SPECT. 2004, Academic Press, 596 p.
  4. Telichenko V.I., Dorogan' I.A. Obespechenie kompleksnoy bezopasnosti ob"ektov meditsinskogo naznacheniya s istochnikami ioniziruyushchego [Ensuring Integrated Security for the Objects of Medical Purpose with Ionizing Sources]. Vestnik MGSU [Proceedings of Moscow State University of Structural Engineering]. 2014, no. 8, pp. 136—152. (in Russian)
  5. Bittner A., Jungwirth D., Bernard M., Gerland L., Brambilla G., Fitzpatrick J. Concepts Aimed at Minimizing the Activation and Contamination of Concrete. Decommissioning of Nuclear Power Plants. Proceedings of a European Conference held in Luxembourg, 22—24 May 1984. Springer Netherlands, 1984, pp. 371—388. DOI: http://dx.doi.org/10.1007/978-94-009-5628-5_32.
  6. Wang Feng, Cui Tao, Zhang Tianjue, Jia Xianlu, Zhang Xingzhi, Li Zhenguo. Radiation Shielding Design for Medical Cyclotron. Proceedings of IPAC2013, Shanghai, China. JACoW — Creative Commons Attribution, 2013, pp. 3339—3341.
  7. Kimura K., Ishikawa T., Kinno M., Yamadera A., Nakamura T. Residual Long-Lived Radioactivity Distribution in the Inner Concrete Wall of a Cyclotron Vault. Health Physics. 1994, vol. 67, no. 6, pp. 621—631.
  8. Shiomi T., Azeyanagi Y., Yamadera A., Nakamura T. Measurement of Residual Radioactivity of Machine Elements and Concrete on the Cyclotron Decommissioning. Journal of Nuclear Science and Technology. 2000, vol. 37, no. 1, pp. 357—361. DOI: http://dx.doi.org/10.1080/00223131.2000.10874906.
  9. SanPiN 2.6.1.2891—11. Trebovaniya radiatsionnoy bezopasnosti pri proizvodstve, ekspluatatsii i vyvode iz ekspluatatsii (utilizatsii) meditsinskoy tekhniki, soderzhashchey istochniki ioniziruyushchego izlucheniya [Sanitary Regulations and Standards SanPiN 2.6.1.2891—11. Requirements for Radiation Safety in the Process of Production, Operation and Decommissioning (Utilization) of Medical Technology Containing Sources of Ionizing Radiation]. Available at: http://ohranatruda.ru/ot_biblio/ot/2011/zak1196.pdf. Date of access: 28.09.2014. (in Russian)
  10. NP-038—11. Obshchie polozheniya obespecheniya bezopasnosti radiatsionnykh istochnikov [Norms and Requirements NP-038—11. General Requirements on Ensuring Safety of Radiation Sources]. Federal'nye normy i pravila v oblasti ispol'zovaniya atomnoy energii [Federal Norms and Requirements in the Field of Nuclear Energy Use]. Available at: http://files.stroyinf.ru/Data2/1/4293806/4293806203.files/0.gif. Date of access: 28.09.2014. (in Russian)
  11. Ob obrashchenii s radioaktivnymi otkhodami i o vnesenii izmeneniy v otdel'nye zakonodatel'nye akty Rossiyskoy Federatsii (s izmeneniyami i dopolneniyami). Federal'nyy Zakon Rossiyskoy Federatsii ot 11 iyulya 2011 g. № 190-FZ [On Dealing with Radiation Waste and on Changes in Separate Legislative Acts of the Russian Federation (with Amendments and Additions). Law of the Russian Federation from July 11, 2011 № 190-FZ]. Available at: http://base.garant.ru/12187848. Date of access: 28.09.2014. (in Russian)
  12. PETtrace — Unshielded Machine: Summary of Source Terms, Radiation Fields and Radwaste Production. Electronic Signature Information. GE Healthcare, 11/23/2005.Doc0100224, Rev:1, 1st ed., 21 p.
  13. Lavdanskiy P.A., Nazarov V.M., Stefanov N.I., Frontas'eva M.V. Navedennaya aktivnost' betona, primenyaemogo dlya zashchity yadernykh ustanovok [Induced Activity of Concrete Used for Shielding of Nuclear Facilities]. Atomnaya energiya [Nuclear Energy]. 1988, vol. 64, no. 6, pp. 419—422. (in Russian)
  14. Engovatov I.A., Mashkovich V.P., Orlov Yu.V. Pologikh B.G., Khlopkin N.S., Tsypin S.G. Radiatsionnaya bezopasnost' pri vyvode iz ekspluatatsii reaktornykh ustanovok grazhdanskogo i voennogo naznacheniya [Radiation Safety in the Process of Decommissioning of Reactor Facilities of Civil and Military Designation]. Moscow, Paims Publ., 1999, 300 p. (in Russian)
  15. Bylkin B.K., Engovatov I.A. Vyvod iz ekspluatatsii reaktornykh ustanovok [Decommissioning of Reactor Facilities]. Moscow, MGSU Publ., 2014, 228 p. (in Russian)

Download

Results 1 - 2 of 2