INFLUENCE PRODUCED BY THE URBAN INFRASTRUCTURE DEVELOPMENT ON THE LIVING ENVIRONMENT

Vestnik MGSU 4/2012
  • Giyasov Botir Iminzhonovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, chair, Department of Architectural and Construction Design, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 17 - 21

The article drives attention to factors of influence produced on the living environment and the humans. The factors in question originate from development of the urban infrastructure. Analysis of actions aimed at improving the ecological conditions of urban environments is provided in the article.
The living environment represents a complex facility in the course of its continuous development. It has a natural and anthropogenic origin. Its origin makes it possible for researchers to ifn links between the physical urban space and its social and hygienic properties. Therefore, it is necessary to consider the living environment not as a densely build structural constituent of a city, but as the environment designated for living that is shaped up by a variety of factors.
The comprehensive impact produced by the environment on humans makes it necessary to develop new methodologies that will assure the complex hygienic assessment of the environment. The assessment will make it possible to research the link between the quality of the environment and the level of health of the population and to identify the number and the sequence of actions aimed at optimizing the environment and the mode of life of inhabitants of present-day megalopolises. The methodology of the per-property assessment of the quality of the urban environment, namely, the microclimate, the lighting, the air quality, must be complemented by its comprehensive assessment.
Local social links must be developed alongside with the urban infrastructure. However, replanning of well-established residential areas, that demonstrate well-established social links and territoriality, reveals strong stressors. Therefore, the recommendation is to retain the areas of psychological invariance in the older sections of big cities to retain well-established and easy-to-recognize planning solutions and social links.
An inhabitant of a big city is subjected both to the impact of anthropogenic factors that are the outcome of the urbanization, and to the impact of psychological factors. Intensive development of megalopolises and growth of cities contribute to formation of anthropogenic factors and produce a negative impact on the ecosystem of the environment. Therefore, the residential housing must be considered as a complex environment that set up special claims. Contemporary housing must be designed with account for the urban environment, including its polluted air, water and soil, limited and transformed city-to-nature links. Development of transportation networks and urban noises require particular attention.
There is an urgent need to improve the architectural and planning patterns of urban territories that need hygienic regulations applicable both to residential and industrial areas, highways, parks, office buildings, leisure and community service buildings, schools, hospitals, convalescence houses, kindergartens, etc.

DOI: 10.22227/1997-0935.2012.4.17 - 21

References
  1. Giyasov A. Rol' mnogoetazhnoy zastroyki v regulirovanii teplovogo rezhima gorodov s zharkoshtilevym profilem klimata (na primere g. Dushanbe) [Role of Multi-storied Buildings in Regulation of the Heat Mode of Cities in the Hot-Doldrum Climate (exemplified by the town of Dushanbe). Moscow, 1983.
  2. Gubernskiy Yu.D., Litskevich V.K. Zhilische dlya cheloveka [Dwelling for the Man]. Мoscow, Stroyizdat Publ., 1991.
  3. Goromosov M.S. Mikroklimat zhilisch i ego gigienicheskoe normirovanie [Microclimate of Dwellings and Its Hygienic Regulation]. Moscow, Medgiz Publ., 1963.

Download

CLIMATE PROJECTIONSFOR THE URBAN ENVIRONMENT IN THE ASSESSMENT OF THE WIND ENERGY POTENTIAL OF BUILDINGS

Vestnik MGSU 6/2013
  • Egorychev Oleg Olegovich - Moscow State University of Civil Engineering (MGSU) 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation, Moscow State University of Civil Engineering (MGSU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Dunichkin Il’ya Vladimirovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Senior Researcher, Training, Research and Production Laboratory of Wind-tunnel and Aeroacoustic Testing of Civil Engineering Structures, Associate Professor, Department of Design of Buildings and Urban Development, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 123-131

Moscow climate is applied by the authors to study particular issues of climate projections. As part of the research, the authors developed the climatic structure of Moscow. The authors identified the interrelation between climatic and urban planning factors, on the one hand, and wind conditions, on the other hand. The urban climate is essential from the viewpoint of temperature, humidity, gas concentration, and air pollution. Any research into the urban climate includes the study of the residential housing density, efficient use of urban facilities, as well as the multi-component assessment of the wind energy potential. Any climate projections are based on the fact that Moscow is a city of the “two seasons”; therefore, any architectural and climatic analysis is employed to resolve two problems at the same time: one problem consists in the protection from wind and cold stress in winter, and the other one consists in the aeration and development of comfortable conditions in summer. The analysis of contemporary design solutions has proven that contemporary urban designers do not follow all scientific recommendations. The objective of the research is to develop the instrument that will make it possible to take account of climate projections in the assessment of the wind power potential. The practical objective is the identification of optimal locations of small wind turbines.The relationship between the wind pattern and urban planning factors is analyzed in the article. The authors provide approaches to the assessment of the wind energy potential of cities on the basis of the analysis of the international experience and classification of factors influencing the positioning of wind turbines. They also demonstrate various examples of arrangement of small wind turbines with a capacity of 1 kW. Moreover, the authors provide advanced design solutions for wind turbines. This publication is made within the framework of State Contracts 16.552.11.7064, 13.07.2012.

DOI: 10.22227/1997-0935.2013.6.123-131

References
  1. Climate Booklet for Urban Development: References for Zoning and Planning. Baden-Wurttemberg Innen Ministerium, Stuttgart, 2004.
  2. Poddaeva O.I., Dunichkin I.V., Kochanov O.A. Osnovnye podkhody k issledovaniyu vozobnovlyaemykh istochnikov energii kak energeticheskogo potentsiala territoriy i zastroyki [Basic Approaches to Research into Renewable Sources of Energy as the Energy Potential of Territories and Built-up Areas]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 10, pp. 221—228.
  3. Poddaeva O.I., Dunichkin I.V., Prokhorova T.V. Vliyanie prostranstvennoy organizatsii rekonstruiruemoy zhiloy zastroyki na vetroenergeticheskiy potentsial sredy [Effect of Spatial Organization Patterns of Restructured Residential Housing Areas on the Wind Energy Potential of the Environment]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 2, pp. 221—228.
  4. Serebrovskiy F.L. Aeratsiya naselennykh mest [Aeration of Populated Areas]. Moscow, Stroyizdat Publ., 1985, 170 p.
  5. Kovalenko P.P., Orlova L.N. Gorodskaya klimatologiya [Urban Climatology]. Moscow, Stroyizdat Publ., 1993, 144 p.
  6. Myagkov M.S., Gubernskiy Yu.D., Konova L.I., Litskevich V.K.; Myagkov M.S., editor. Gorod, arkhitektura, chelovek i klimat [City, Architecture, Man, and Climate]. Moscow, Arkhitektura-S Publ., 2006, 320 p.
  7. Rukovodstvo po otsenke i regulirovaniyu vetrovogo rezhima zhiloy zastroyki [Guidebook for Assessment and Regulation of the Wind Regime of Residential Areas]. Moscow, TsNIIP gradostroitel’stva publ., 1986.
  8. Lawson T.V. The Wind Content of the Built Environment. Journal of Industrial Aerodynamics. 1978, no. 3, pp. 93—105.
  9. Oke T.R. Street Design and Urban Canopy Layer Climate. Energy and Buildings. 1988, vol. 11, pp. 103—113.
  10. Duffy M.J. Small Wind Turbines Mounted to Existing Structures. Georgia Institute of Technology. USA, Atlanta, 2010, 105 p.
  11. Prokhorova T.V. Osobennosti i perspektivy razvitiya vetroenergetiki v urbanizirovannoy srede [Features and Prospects for Development of Wind Energy Generation in Urbanized Areas]. Vestnik Povolzh’ya [Proceedings of the Volga Regions]. 2013, no. 2, pp. 121—128.
  12. Lazareva I.V. Urbi et orbi. Pyatoe izmerenie goroda [Urbi et orbi. Fifth Urban Dimension]. Tr. RAASN. Ser. Teoreticheskie osnovy gradostroitel’stva. [Works of the Russian Academy of Architecture and Construction Sciences. Theoretical Fundamentals of Urban Planning]. Moscow, LENAND Publ., 2006, 80 p.
  13. Ghiaus S., Allard F., Santamouris M., Georgakis C., Nicol F. Urban Environment Influence on Natural Ventilation Potential. Building and Environment. 2006, vol. 41, no. 4, pp. 395—406.

Download

Simulation of energy demand for heating and cooling of a 5-storey residential buildingand evaluation of thermal conditions based on PMV and PPD thermal comfort indices

Vestnik MGSU 10/2013
  • Usmonov Shukhrat Zaurovich - Khujand Politechnic Institute of Tajik Technical University by academic M. Osimi (PITTU); Moscow State University of Civil Engineering (MGSU) Senior Lecturer, Khujand Politechnic Institute of Tajik Technical University by academic M. Osimi (PITTU); Moscow State University of Civil Engineering (MGSU), 226 Lenina st., Khujand, 735700, Tajikistan; applicant, Department of Architecture of Civil and Industrial Buildings; 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 216-229

The energy demand of a 5-storey residential building (a 105 series design structure built in 1980), located in the city of Khujand, Tajikistan, was simulated at the Fraunhofer Institute of Building Physics in Germany using WUFI+ software. The purpose of the simulation was to reduce the energy demand for its heating and cooling, as well as to ensure thermal comfort inside the building in the course of its reconstruction and modernization. Reconstruction and modernization of this residential building includes the construction of POLYALPAN ventilated façade, application of mineral wool insulation sheets, aerated concrete blocks, and replacement of old windows by the sealed double glazing.The analysis of micro-climatic parameters of this residential building is performed in furtherance of Category II of EN 15251 "Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics", and it is based on the comprehensive assessment of the values of heat indexes PMV (Predicted Mean Vote) and PPD (Predicted Percentage of Dissatisfied). The research is based on the modeling pattern limiting the air temperature values on the premises during the heating period and reducing the energy demand for its heating through the employment of a heat exchanger. The findings prove that the analysis of micro-climatic parameters of buildings would benefit from the comprehensive and integrated assessment of the values of thermal comfort indexes PMV and PPD and from the evaluation of thermal insulation properties of clothes. Moreover, the findings demonstrate the need for development of national standards of the microclimate inside residential buildings. The research was based on the data simulating the climatic conditions in the northern region of Tajikistan during an extremely hot summer season and the optimum indoor air temperature of +24,3 °C instead of 20—22 °C. The research has proven that it is advisable to record the cooling data for five hottest months (May through September) instead of three, which is a common practice. The energy savings of 47,5 % were achieved using a 90 % efficient heat recovery procedure during the winter period when mechanical ventilation systems are in operation. Using heat exchangers after the renovation and modernization of residential buildings can significantly reduce the load on the heating system of a building.

DOI: 10.22227/1997-0935.2013.10.216-229

References
  1. Bulgakov S.N. Novye tekhnologii sistemnogo resheniya kriticheskikh problem gorodov [New Technologies for Comprehensive Resolution of Critical Urban Problems]. Izvestiya Vuzov: Stroitel’stvo [News of Institutions of Higher Education. Construction] 1998, no. 3, pp. 5—23.
  2. MKS ChT (SNiP RT) 23-02—2009. Teplovaya zashchita zdaniy. [MKS CHT (Construction Norms and Rules of the Republic of Tajikistan) 23-02—2009. Thermal Protection of Buildings].
  3. Nigmatov I.I. Proektirovanie zdaniy v regionakh s zharkim klimatom s uchetom energosberezheniy, mikroklimata i ekologii [Design of Buildings in Hot Climates with Account for Energy Saving, Microclimate, and Ecology]. Dushanbe, Irfon Publ., 2007, 303 p.
  4. ASHRAE Handbook. Fundamentals. SI Edition. 2005, pp. 8—17.
  5. Fanger P.O. Thermal Comfort Analysis and Applications in Environmental Engineering. New York, McGraw-Hill, 1970, 244 p.
  6. Fanger P.O. Thermal Comfort. Robert E. Crieger, Malabar, Florida, 1982.
  7. Vatin N.I., Samoplyas T.V. Sistemy ventilyatsii zhilykh pomeshcheniy mnogokvartirnykh domov [Ventilation Systems for Living Spaces of Multiple-occupancy Buildings]. St.Petersburg, 2004, 66 p.
  8. Kompaniya AIRKON GRUPP. Vozdushnyy rekuperator tepla i vlagi EcoLuxe EC-3400H3 dlya sistem pritochno-vytyazhnoy ventilyatsii. [AIRKON GRUPP Company. Heat and Moisture Exchanger EcoLuxe EC-3400H3 for Combined Extract-and-input Systems]. Available at: http://www.climatexpo.ru/main/members/novelty/1216/. Date of access: 05.05.2013.
  9. EN 15251. Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. May, 2007.
  10. Olesen B.W. Information paper on EN 15251 Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. P. 114. Energy Performance of Buildings. CENSE, 15.02.2010, pp. 1—7.

Download

Results 1 - 3 of 3