DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Construction solutions for the exterior walls in the process of increasing the width of residential buildings of brownfield construction in seismic hazardousand dry hot conditions of Central Asia

Vestnik MGSU 2/2014
  • Usmonov Shukhrat Zaurovich - Khujand Politechnic Institute of Tajik Technical University by academic M. Osimi (PITTU); Moscow State University of Civil Engineering (MGSU) Senior Lecturer, Khujand Politechnic Institute of Tajik Technical University by academic M. Osimi (PITTU); Moscow State University of Civil Engineering (MGSU), 226 Lenina st., Khujand, 735700, Tajikistan; applicant, Department of Architecture of Civil and Industrial Buildings; 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 57-64

The main object of this study is the reconstruction, renovation and modernization of the housing built in the period 1975—1985. These buildings have low energy efficiency due to the poor thermal insulation properties of the walls. These apartments do not meet the necessary requirements for year round warmth and comfort.Reconstruction is more preferable, than new-build, because of the cost saving for the land acquisition. Reconstruction is generally 1.5 times cheaper than new-build with 25—40 % reduced cost on building materials and engineering infrastructure.Increasing the width of the apartment blocks from 12 to 15 m can save 9—10 % on the consumption of thermal energy for heating and reduce the m2 construction cost by 5.5—7.0 %. In—5-9 storey high-rise buildings the savings are 3—5 %.Therefore, the width of the apartment block should preferably be between 9—12 m but could be extended to 18 m. The depth of the apartments themselves will be 5.4 — 6.0 —7.2 or 9.0 m. During the reconstruction of 5-storey residential buildings (Building Type105) in a seismic zone, an increase in the width of the block and the lateral stiffness of the building is achieved by building a new reinforced concrete (RC) frame on both sides of the building with a depth of between 2 and 6 m. This technique is especially effective in increasing the seismic resistance of the building. Self-supporting walls of cellular concrete blocks (density 600 kg/m3 and a thickness of 300 mm) are constructed on the outside of the frame, taking care to avoid cold bridges.Model studies have shown that in the conditions of hot-arid climate the thickness of the air gap in a ventilated facade does not significantly change the cooling-energy consumption of the building, and heating consumption is significantly increased. The building's energy consumption is most influenced by the volume of the air in the air gap. By increasing the ventilation rate in the air gap, the energy consumption for building heating increases and for cooling — slightly decreases. For the conditions of the northern region of Tajikistan, the recommended optimal thickness of the air gap with ventilation is 60 mm.

DOI: 10.22227/1997-0935.2014.2.57-64

References
  1. Bulgakov S.N. Energosberegayushchie tekhnologii vtorichnoy zastroyki rekonstruiruemykh zhilykh kvartalov [Energy-saving Technologies for Brownfield Construction of the Reconstructed Residential Districts]. ABOK. 1998, no. 2, pp. 5—11.
  2. Bulgakov S.N. Energoeffektivnye stroitel'nye sistemy i tekhnologii [Energy-efficient Construction Systems and Technologies]. ABOK. 1999, no. 2, pp. 5—11.
  3. Tabunshchikov Yu.A., Livchak V.I., Gagarin V.G., Shilkin N.V. Puti povysheniya energoeffektivnosti ekspluatiruemykh zdaniy [Ways to Increase Energy Efficiency of the Operating Buildings]. ABOK. 2009, no. 5, pp. 38—47.
  4. Nigmatov I.I. Proektirovanie zdaniy v regionakh s zharkim klimatom s uchetom energosberezheniy, mikroklimata i ekologii [Design of Buildings in Hot Climate Regions with Account for Energy Efficiency, Microclimate and Ecology]. Dushanbe, Irfon Publ., 2007, 303 p.
  5. Agentstvo po statistike pri Prezidente Respubliki Tadzhikistan. Staticheskie dannye po stroitel'stvu [Statistical Agency under the President of the Republic of Tadjikistan. Statistical Data on Construction]. Available at: http://www.stat.tj/ru/. Date of access: 01.12.2013.
  6. Usmonov Sh.Z. Modelirovanie energeticheskikh zatrat na otoplenie i okhlazhdenie 5-etazhnogo zhilogo doma i otsenka temperaturnykh usloviy po indeksam teplovogo komforta PMV i PPD [Simulation of Energy Demand for Heating and Cooling of a 5-Storey Residential Building and Evaluation of Thermal Conditions Based on PMV and PPD Thermal Comfort Indices]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 10, pp. 216—229.
  7. Rekomendatsii po proektirovaniyu i primeneniyu fasadnoy sistemy «Polialpan» dlya stroitel'stva i rekonstruktsii zdaniy [Recomendations on the Design and Use of the Facade System "Polialpan" for Construction and Reconstruction of Buildings]. Moscow, TsNIIEP zhilishcha Publ., 2009, 136 p.
  8. Gagarin V.G., Kozlov V.V., Tsykanovskiy E.Yu. Puti povysheniya energoeffektivnosti ekspluatiruemykh zdaniy [Ways to Increase Energy Efficiency of the Operating Buildings]. ABOK. 2004, no. 2, pp. 20—27.

Download

ASEISMIC CONSTRUCTION AS THE GEO-ECOLOGICAL FACTOR

Vestnik MGSU 8/2012
  • Galay Boris Fedorovich - North Caucasian Federal University Professor, Doctor of Geological and Mineralogy Sciences, North Caucasian Federal University, 2 prospekt Kulakova, Stavropol, 355029, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Chernov Yuriy Konstantinovich - Research and Production Centre of Engineering Geology Professor, Doctor of Physical and Mathematical; Sciences, Research and Production Centre of Engineering Geology, 185 Dzerzhinskogo st., Stavropol, 355003, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Chernov Andrey Yurevich - North Caucasian Federal University Assistant Lecturer, Department of Construction, North Caucasian Federal University, 2 prospekt Kulakova, Stavropol, 355029, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 154 - 168

Seismicity of any territory produces a significant impact on human beings, micro-organisms,
animals and plants, i.e. the biota. In seismically active areas, earthquake-resistant construction is
an important geo-ecological factor and one of principal methods of protection against the threat of
earthquakes. The efficiency of earthquake-resistant construction is largely determined by the accuracy
of predictions, potential seismic effects of earthquakes, and additional seismic loads on buildings
and structures. Therefore, valid and reliable assessment of the seismic hazard and seismic
risks can become an integral part of geo-ecological monitoring undertakings and risk assessments.
Application of advanced probabilistic technologies in the design and maintenance of structures may
increase the accuracy of projections of dangerous seismic loads to optimize the losses caused by
the negative impact of earthquakes in compliance with the pre-set dependence between safety,
economic efficiency and practicability patterns.
Probabilistic technologies, including passive constituents of the general method of geo-ecological
protection, have been tested in Central Ciscaucasia. The results of assessments of seismic
hazards and risks in various engineering and seismological conditions of Stavropol, Krasnodar,
Pyatigorsk, Kavkazskaya completed for structures of various degrees of responsibility are represented
in the article.

DOI: 10.22227/1997-0935.2012.8.154 - 168

References
  1. Telichenko V.I., Slesarev M.Yu. Upravlenie ekologicheskoi bezoposnost’yu stroitel’stva. Ekologicheskaya ekspertiza i otsenka vozdeystviy okruzhayushchuyu sredu [Management of Ecological Safety of Construction. Ecological Assessment of Impacts Produced onto the Environment]. Moscow, ASV Publ., 2005, 441 p.
  2. Trofi mov V.T., Khar’kina M.A., Grigor’eva I.Yu. Ekologicheskaya geodinamika [Ecological Geodynamics]. Moscow, KDU Publ., 2008, 473 p.
  3. Medvedev S.V. Ingenernaya seismologia [Engineering seismology]. Moscow, Gosstroyizdat Publ., 1962, 284 p.
  4. Rikhter Ch. Elementarnaya seysmologiya [Elementary Seismology]. Moscow, Inostrannaya literatura Publ., 1963, 670 p.
  5. Yasamanov N.A. Osnovy geoekologii [Fundamentals of Geo-ecology]. Moscow, Akademiya Publ., 2003, 352 p.
  6. Peredel’skiy L.V., Prikhodchenko O.E. Stroitel’naya ekologiya [Construction Ecology]. Rostov-on-Don, Feniks [Phoenix] Publ., 2003, 320 p.
  7. Karlovich I.A. Geoekologiya [Geo-ecology]. Akademicheskiy Proekt [The Academic Project]. Moscow, Al’ma-Mater Publ., 2005, 512 p.
  8. Telichenko V.I., Slesarev M.Yu. Stoikov V.F. Upravlenie ekologicheskoy bezopasnost’yu stroitel’stva. Ekologicheskiy monitoring. [Management of Ecological Safety of Construction. Ecological Monitoring]. Moscow, ASV Publ., 2005, 328 p.
  9. Razrabotka raschetnykh modeley seysmicheskikh vozdeystviy dlya stroitel’nogo proektirovaniya s uchetom neopredelennosti i nepolnoty seysmologicheskikh dannykh o spektral’nykh i vremennykh parametrakh seysmicheskikh dvizheniy grunta [Development of Analysis Models of the Seismic Impact Produced onto Design with Account for Uncertainties and Incompleteness of Seismological Data concerning Spectral and Time Parameters of Seismic Motions of the Earth Surface]. Performed by Yu.K. Chernov. Funds of the RF State Committee for Construction, Residential Housing and Utilities. Stavropol, 2003, 141 p.
  10. Chernov A.Yu. Veroyatnostnyy analiz seysmicheskoy opasnosti dlya tseley stroitel’nogo proektirovaniya, strakhovaniya i otsenki ob”ektov nedvizhimosti (na primere territoriy tsentral’nogo Predkavkaz’ya) [Probabilistic Analysis of Seismic Hazard for Structural Design, Insurance and Appraisal of Real Estate Items (Exemplifi ed by the Territories of Central Ciscaucasia)]. Vestnik SevKavGTU [Proceedings of North Caucasian State Technical University]. 2011, no. 2, Stavropol’, 295 p.
  11. Chernov A.Yu. Veroyatnostnye modeli seysmogennogo razzhizheniya grunta i prakticheskiy opyt ikh primeneniya v g. Stavropol’ [Probabilistic Models of Seismic Liquefaction of Soil and Its Practical Application in Stavropol]. Vestnik SevKavGTU [Proceedings of North Caucasian State Technical University]. 2011, no. 4, Stavropol’, 275 p.
  12. Chernov A.Yu. Predvaritel’naya otsenka seysmicheskogo riska nekotorykh territoriy tsentral’nogo Predkavkaz’ya. Inzhenernye izyskaniya. Razdel inzhenernaya seysmologiya. [Tentative Assessment of Seismic Risks in Some Territories of Central Ciscaucasia]. Ingenernie izyskaniya. Razdel ingenernaya seismologiya. [Engineering Researches. Engineering Seismology]. Moscow, OAO PNIIIS, no. 12, 2011, 88 p.
  13. Chernov Yu.K. Sil’nye dvizheniya grunta i kolichestvennaya otsenka seysmicheskoy opasnosti territoriy [Strong Motions of Soil and Quantitative Assessment of Seismic Hazards in Territories]. Tashkent, FAN Publ., 1989, 295 p.
  14. SP-14.3330.2011. Stroitel’stvo v seysmicheskikh rayonakh [Construction Rules 14.3330.2011. Construction in Seismic Areas]. Moscow, Ministry of Regional Development of the Russian Federation, 2011, 75 p.
  15. SNiP II 7—81* Stroitel’nye normy i pravila. Chast’ II. Glava 7. Stroitel’stvo v seysmicheskikh rayonakh [Construction Norms and Rules. Part II. Chapter 7. Construction in Seismic Areas]. Moscow, Ministry of Construction of the Russian Federation, 2002, 48 p.

Download

Results 1 - 2 of 2