Features of propagation and recordingof the stress waves in plates of finite thickness

Vestnik MGSU 2/2014
  • Cherednichenko Rostislav Andreevich - Moscow State University of Civil Engineering (MGSU) Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Higher Mathematics, Moscow State University of Civil Engineering (MGSU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 65-73

This work was carried out to study at the same time the dynamics of wave propagation in plane and axisymmetric plates by finite-difference numerical calculation and by the method of dynamic photoelasticity.In many cases it is possible to carry out the investigation of the dynamic stressed state of solid structures under the impact of seismic waves in plane statement, observing the foundation and the building itself in the conditions of plane deformation. Such problems in structural mechanics are usually investigated on plates providing the conditions of generalized plane stressed condition and accounting for the necessity of the known substitution of elastic constants. In case of applying the model of generalized plane stressed state for investigating two-dimensional waves’ propagation in three-dimensional elastic medium it may be necessary to observe certain additional conditions, which for example limit the class of external impacts of high frequencies (short waves). The use of candling for wave recording in plane models explored with the method of dynamic photoelasticity in the observed cases of impulse loading of the plates with finite thickness gives satisfactory results.

DOI: 10.22227/1997-0935.2014.2.65-73

  1. Parham R.T., Sutton D.J. The Transition Between Two- and Three- Dimensional Waves Seismic Models. Bull. Seism. Soc. Amer. 1971, vol. 61, no. 4, pp. 957—960.
  2. Cheban V.G., Naval I.K., Sabodash P.F., Cherednichenko R.A. Chislennye metody resheniya zadach dinamicheskoy teorii uprugosti [Numerical Methods of Solving the Dynamic Theory of Elasticity Problems]. Kishinev, Shtintsa Publ., 1976, 226 p.
  3. Cherednichenko R.A. Nestatsionarnaya zadacha o rasprostranenii uprugikh voln v polose [Nonstationary Problem of the Elastic Waves Propagation in the Band]. Rasprostranenie uprugikh i uprugo-plasticheskikh voln: materialy 5 Vsesoyuznogo simpoziuma [Elastic and Elastic-plastic Waves Propagation. Proceedings of the 5th All-Union Symposium]. Alma-Ata, Nauka Publ., 1973, pp. 319—324.
  4. Sabodash P.F., Cherednichenko R.A. Primenenie metoda prostranstvennykh kharakteristik k resheniyu osesimmetrichnykh zadach po rasprostraneniyu uprugikh voln [Application of the Spatial Characteristics Method in Solving the Axisymmetric Problems of Elastic Waves Propagation]. Prikladnaya matematika i tekhnicheskaya fizika [Applied Mathematics and Applied Physics]. 1971, no. 4, pp. 101—109.
  5. Strel'chuk N.A., Khesina G.N., editors. Metod fotouprugosti: v 3 tomakh [Photoelasticity Method. In three volumes]. Moscow, Stroyizdat Publ., 1975, vol. 2, 367 p.
  6. Nigul U.K. Sopostavlenie rezul'tatov analiza perekhodnykh volnovykh protsessov v obolochkakh i plastinakh po teorii uprugosti i priblizhennym teoriyam [Comparison of the Analysis Results of Transient Wave Propagation in Shells and Plates According to the Elasticity Theory and Approximated Theories]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics]. 1969, vol. 33, no. 2, pp. 308—332.
  7. Klifton R.Dzh. Raznostnyy metod v ploskikh zadachakh dinamicheskoy uprugosti [Difference Method for Plane Problems of Dynamic Elasticity]. Mekhanika: sbornik [Mechanics: the Collection]. 1968, no. 1, pp. 103—122.
  8. Cherednichenko R.A. Poperechnoe vozdeystvie impul'sa davleniya na plitu beskonechnoy dliny [Transversal Impact of the Pressure Pulse on the Plate of Infinite Length]. Mekhanika tverdogo tela [Solid Mechanics]. 1974, no. 2, pp. 113—119.


Results 1 - 1 of 1