### Method for determining initial characteristics of the most unfavorable accelerograms for linear systems with finite number of degrees of freedom

Pages 80-91

The paper proposes a method of determining the baseline characteristics of accelerograms required for their synthesis. Accelerograms generated according to them transmit maximum impact energy of the seismic action to a construction. However, they are possible with a certain probability for a given construction site. To solve this problem were obtained seismic characteristics of the construction site and dynamic characteristics of the structure. Then was formed the target function characterizing the energy transmitted to the structure. Characteristics corresponding to the maximum of the target function will be most unfavorable baseline characteristics of accelerograms. As construction was considered a linear system with a finite number of degrees of freedom. In paper were obtained impulse and frequency responses of the considered linear system. As the seismic characteristics of the construction site have been obtained some characteristics of accelerograms. Such as the spectral density, distribution law dominant frequency, envelope. In paper as the target function is considered the dispersion of the displacement of the highest floor of the system. As varied parameter is considered a shift of the initial spectral density of the impact. On the shift parameter imposed probabilistic restrictions due to the law of the distribution of the dominant frequency. The use of the proposed method when generating accelerograms will allow to calculate seismic stability the most complete way.

DOI: 10.22227/1997-0935.2015.8.80-91

- Bolotin V.V., Radin V.P., Chirkov V.P. Modelirovanie dinamicheskikh protsessov v elementakh stroitel’nykh konstruktsiy pri zemletryaseniyakh [Modeling Dynamic Processes in the Elements of Building Structures in Case of Earthquakes]. Izvestiya vuzov.Stroitel’stvo [News of Higher Educational Institutions. Construction]. 1999, no. 5, pp. 17—21. (In Russian)
- Mkrtychev O.V., Yur’ev R.V. Raschet konstruktsiy na seysmicheskie vozdeystviya s ispol’zovaniem sintezirovannykh akselerogramm [Structural Analysis on Seismic Effects Using Synthesized Accelerograms]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2010, no. 6, pp. 52—54. (In Russian)
- Mkrtychev O.V., Reshetov A.A. Metodika modelirovaniya naibolee neblagopriyatnykh akselerogramm zemletryaseniy [Methods of Modeling the Most Unfavorable Earthquake Accelerograms]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2013, no. 9, pp. 24—26. (In Russian)
- Nazarov Yu.P., Poznyak E.V., Filimonov A.V. Analiz vida volnovoy modeli i poluchenie raschetnykh parametrov seysmicheskogo vozdeystviya dlya vysotnogo zdaniya [Wave Model Analysis and Obtaining Estimated Parameters of the Seismic Action for Tall Buildings]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 5, pp. 40—45. (In Russian)
- Nazarov Yu.P., Poznyak E.V. O prostranstvennoy izmenchivosti seysmicheskikh dvizheniy grunta pri raschetakh sooruzheniy [On Space Variability of Seismic Movements of Soil at Structural Analysis]. Osnovaniya, fundamenty i mekhanika gruntov [Soil Mechanics and Foundation Engineering]. 2014, no. 5, pp. 17—20. (In Russian)
- Pshenichkina V.A., Zolina T.V., Drozdov V.V., Kharlanov V.L. Metodika otsenki seysmicheskoy nadezhnosti zdaniy povyshennoy etazhnosti [Methods of Estimating Seismic Reliability of High-Rise Buildings]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2011, no. 25, pp. 50—56. (In Russian)
- Cacciola P. A Stochastic Approach for Generating Spectrum Compatible Fully Nonstationary Earthquakes. Computers & Structures. 2010, vol. 88, no. 15—16, pp. 889—901. DOI: http://dx.doi.org/10.1016/j.compstruc.2010.04.009.
- Hernández J.J., López O.A. Response to Three-Component Seismic Motion of Arbitrary Direction. Earthquake Engineering & Structural Dynamics. 2002, vol. 31, no. 1, pp. 55—57. DOI: http://dx.doi.org/10.1002/eqe.95.
- Shrikhande M., Gupta V.K. On the Characterization of the Phase Spectrum for Strong Motion Synthesis. Journal of Earthquake Engineering. 2001, vol. 5, no. 4, pp. 465—482. DOI: http://dx.doi.org/10.1080/13632460109350402.
- Ayzenberg Ya.M., Akbiev R.T., Smirnov V.I., Chubakov M.Zh. Dinamicheskie ispytaniya i seysmostoykost’ navesnykh fasadnykh sistem [Dynamic Tests and Seismic Resistance of Hinged Facade Systems]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2008, no. 1, pp. 13—15. (In Russian)
- Dzhinchvelashvili G.A., Mkrtychev O.V. Effektivnost’ primeneniya seysmoizoliruyushchikh opor pri stroitel’stve zdaniy i sooruzheniy [Effectiveness of Seismic Isolation Bearings during the Construction of Buildings and Structures]. Transportnoe stroitel’stvo [Transpot Construction]. 2003, no. 9, pp. 27—31. (In Russian)
- Mkrtychev O.V., Dzhinchvelashvili G.A. Analiz ustoychivosti zdaniya pri avariynykh vozdeystviyakh [Analysis of Building Sustainability during Emergency Actions]. Nauka i tekhnika transporta [Science and Technology on Transport]. 2002, no. 2, pp. 34—41. (In Russian)
- Radin V.P., Trifonov O.V., Chirkov V.P. Model’ mnogoetazhnogo karkasnogo zdaniya dlya raschetov na intensivnye seysmicheskie vozdeystviya [A Model of Multi-Storey Frame Buildings for Calculations on Intensive Seismic Effects]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2001, no. 1, pp. 23—26. (In Russian)
- Tamrazyan A.G., Tomilin V.A. Nesushchaya sposobnost’ konstruktsiy vysotnykh zdaniy pri lokal’nykh izmeneniyakh fiziko-mekhanicheskikh kharakteristik materialov [Bearing Capacity of High-Rise Structures under Local Changes of Physical-Mechanical Characteristics of Materials]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2007, no. 11, pp. 24—25. (In Russian)
- Trifonov O.V. Modelirovanie dinamicheskoy reaktsii konstruktsiy pri dvukhkomponentnykh seysmicheskikh vozdeystviyakh [Simulation of Dynamic Response of Structures at Two-Component Seismic Impacts]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2000, no. 1, pp. 42—45. (In Russian)
- Thráinsson H., Kiremidjian A.S. Simulation of Digital Earthquake Accelerograms Using the Inverse Discrete Fourier Transform. Earthquake Engineering & Structural Dynamics. 2002, vol. 31, no. 12, pp. 2023—2048.
- Lekshmy P.R., Raghukanth S.T.G. Maximum Possible Ground Motion for Linear Structures. Journal of Earthquake Engineering. 2015, vol. 19, no. 6, pp. 938—955. DOI: http://dx.doi.org/10.1080/13632469.2015.1023472.
- Sanaz Rezaeian, Armen Der Kiureghian. Simulation of Synthetic Ground Motions for Specified Earthquake and Site Characteristics. Earthquake Engineering & Structural Dynamics. 2010, vol. 39, no. 10, pp. 1155—1180. DOI: http://dx.doi.org/10.1002/eqe.997.
- Soize C. Information Theory for Generation of Accelerograms Associated with Shock Response Spectra. Computer-Aided Civil and Infrastructure Engineering. 2010, vol. 25, no. 5, pp. 334—347. DOI: http://dx.doi.org/10.1111/j.1467-8667.2009.00643.x.
- Zentner I. Simulation of Non-Stationary Conditional Ground Motion Fields in the Time Domain. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. 2013, vol. 7, no. 1, pp. 37—48. DOI: http://dx.doi.org/10.1080/17499518.2013.763572.