-
Mkrtychev Oleg Vartanovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, Head of Research Laboratory “Reliability and Earthquake Engineering”, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
-
Reshetov Andrey Aleksandrovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, engineer, Research Laboratory “Reliability and Earthquake Engineering”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The paper proposes a method of determining the baseline characteristics of accelerograms required for their synthesis. Accelerograms generated according to them transmit maximum impact energy of the seismic action to a construction. However, they are possible with a certain probability for a given construction site. To solve this problem were obtained seismic characteristics of the construction site and dynamic characteristics of the structure. Then was formed the target function characterizing the energy transmitted to the structure. Characteristics corresponding to the maximum of the target function will be most unfavorable baseline characteristics of accelerograms. As construction was considered a linear system with a finite number of degrees of freedom. In paper were obtained impulse and frequency responses of the considered linear system. As the seismic characteristics of the construction site have been obtained some characteristics of accelerograms. Such as the spectral density, distribution law dominant frequency, envelope. In paper as the target function is considered the dispersion of the displacement of the highest floor of the system. As varied parameter is considered a shift of the initial spectral density of the impact. On the shift parameter imposed probabilistic restrictions due to the law of the distribution of the dominant frequency. The use of the proposed method when generating accelerograms will allow to calculate seismic stability the most complete way.
DOI: 10.22227/1997-0935.2015.8.80-91
References
- Bolotin V.V., Radin V.P., Chirkov V.P. Modelirovanie dinamicheskikh protsessov v elementakh stroitel’nykh konstruktsiy pri zemletryaseniyakh [Modeling Dynamic Processes in the Elements of Building Structures in Case of Earthquakes]. Izvestiya vuzov.Stroitel’stvo [News of Higher Educational Institutions. Construction]. 1999, no. 5, pp. 17—21. (In Russian)
- Mkrtychev O.V., Yur’ev R.V. Raschet konstruktsiy na seysmicheskie vozdeystviya s ispol’zovaniem sintezirovannykh akselerogramm [Structural Analysis on Seismic Effects Using Synthesized Accelerograms]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2010, no. 6, pp. 52—54. (In Russian)
- Mkrtychev O.V., Reshetov A.A. Metodika modelirovaniya naibolee neblagopriyatnykh akselerogramm zemletryaseniy [Methods of Modeling the Most Unfavorable Earthquake Accelerograms]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2013, no. 9, pp. 24—26. (In Russian)
- Nazarov Yu.P., Poznyak E.V., Filimonov A.V. Analiz vida volnovoy modeli i poluchenie raschetnykh parametrov seysmicheskogo vozdeystviya dlya vysotnogo zdaniya [Wave Model Analysis and Obtaining Estimated Parameters of the Seismic Action for Tall Buildings]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 5, pp. 40—45. (In Russian)
- Nazarov Yu.P., Poznyak E.V. O prostranstvennoy izmenchivosti seysmicheskikh dvizheniy grunta pri raschetakh sooruzheniy [On Space Variability of Seismic Movements of Soil at Structural Analysis]. Osnovaniya, fundamenty i mekhanika gruntov [Soil Mechanics and Foundation Engineering]. 2014, no. 5, pp. 17—20. (In Russian)
- Pshenichkina V.A., Zolina T.V., Drozdov V.V., Kharlanov V.L. Metodika otsenki seysmicheskoy nadezhnosti zdaniy povyshennoy etazhnosti [Methods of Estimating Seismic Reliability of High-Rise Buildings]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2011, no. 25, pp. 50—56. (In Russian)
- Cacciola P. A Stochastic Approach for Generating Spectrum Compatible Fully Nonstationary Earthquakes. Computers & Structures. 2010, vol. 88, no. 15—16, pp. 889—901. DOI: http://dx.doi.org/10.1016/j.compstruc.2010.04.009.
- Hernández J.J., López O.A. Response to Three-Component Seismic Motion of Arbitrary Direction. Earthquake Engineering & Structural Dynamics. 2002, vol. 31, no. 1, pp. 55—57. DOI: http://dx.doi.org/10.1002/eqe.95.
- Shrikhande M., Gupta V.K. On the Characterization of the Phase Spectrum for Strong Motion Synthesis. Journal of Earthquake Engineering. 2001, vol. 5, no. 4, pp. 465—482. DOI: http://dx.doi.org/10.1080/13632460109350402.
- Ayzenberg Ya.M., Akbiev R.T., Smirnov V.I., Chubakov M.Zh. Dinamicheskie ispytaniya i seysmostoykost’ navesnykh fasadnykh sistem [Dynamic Tests and Seismic Resistance of Hinged Facade Systems]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2008, no. 1, pp. 13—15. (In Russian)
- Dzhinchvelashvili G.A., Mkrtychev O.V. Effektivnost’ primeneniya seysmoizoliruyushchikh opor pri stroitel’stve zdaniy i sooruzheniy [Effectiveness of Seismic Isolation Bearings during the Construction of Buildings and Structures]. Transportnoe stroitel’stvo [Transpot Construction]. 2003, no. 9, pp. 27—31. (In Russian)
- Mkrtychev O.V., Dzhinchvelashvili G.A. Analiz ustoychivosti zdaniya pri avariynykh vozdeystviyakh [Analysis of Building Sustainability during Emergency Actions]. Nauka i tekhnika transporta [Science and Technology on Transport]. 2002, no. 2, pp. 34—41. (In Russian)
- Radin V.P., Trifonov O.V., Chirkov V.P. Model’ mnogoetazhnogo karkasnogo zdaniya dlya raschetov na intensivnye seysmicheskie vozdeystviya [A Model of Multi-Storey Frame Buildings for Calculations on Intensive Seismic Effects]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2001, no. 1, pp. 23—26. (In Russian)
- Tamrazyan A.G., Tomilin V.A. Nesushchaya sposobnost’ konstruktsiy vysotnykh zdaniy pri lokal’nykh izmeneniyakh fiziko-mekhanicheskikh kharakteristik materialov [Bearing Capacity of High-Rise Structures under Local Changes of Physical-Mechanical Characteristics of Materials]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2007, no. 11, pp. 24—25. (In Russian)
- Trifonov O.V. Modelirovanie dinamicheskoy reaktsii konstruktsiy pri dvukhkomponentnykh seysmicheskikh vozdeystviyakh [Simulation of Dynamic Response of Structures at Two-Component Seismic Impacts]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2000, no. 1, pp. 42—45. (In Russian)
- Thráinsson H., Kiremidjian A.S. Simulation of Digital Earthquake Accelerograms Using the Inverse Discrete Fourier Transform. Earthquake Engineering & Structural Dynamics. 2002, vol. 31, no. 12, pp. 2023—2048.
- Lekshmy P.R., Raghukanth S.T.G. Maximum Possible Ground Motion for Linear Structures. Journal of Earthquake Engineering. 2015, vol. 19, no. 6, pp. 938—955. DOI: http://dx.doi.org/10.1080/13632469.2015.1023472.
- Sanaz Rezaeian, Armen Der Kiureghian. Simulation of Synthetic Ground Motions for Specified Earthquake and Site Characteristics. Earthquake Engineering & Structural Dynamics. 2010, vol. 39, no. 10, pp. 1155—1180. DOI: http://dx.doi.org/10.1002/eqe.997.
- Soize C. Information Theory for Generation of Accelerograms Associated with Shock Response Spectra. Computer-Aided Civil and Infrastructure Engineering. 2010, vol. 25, no. 5, pp. 334—347. DOI: http://dx.doi.org/10.1111/j.1467-8667.2009.00643.x.
- Zentner I. Simulation of Non-Stationary Conditional Ground Motion Fields in the Time Domain. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. 2013, vol. 7, no. 1, pp. 37—48. DOI: http://dx.doi.org/10.1080/17499518.2013.763572.
-
Mkrtychev Oleg Vartanovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, head, Scientific Laboratory of Reliability and Seismic Resistance of Structures, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), ;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Reshetov Andrey Aleksandrovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, engineer, Research Laboratory “Reliability and Earthquake Engineering”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
Application of accelerograms to the analysis of structures, exposed to seismic loads, and generation of synthetic accelerograms may only be implemented if their varied characteristics are available. The wavelet analysis may serve as a method for identification of the above characteristics. The wavelet analysis is an effective tool for identification of versatile regularities of signals. Wavelets can be used to detect inflection points, extremes, etc. Also, wavelets can be used to filter signals.The authors discuss particular theoretical principles of the wavelet analysis and the multiresolution analysis. The authors present formulas designated for the practical application. The authors implemented a wavelet transform in respect of a specific accelerogram.The recording of the horizontal component (N00E) of the Spitak earthquake (Armenia, 1988) was exposed to the analysis as an accelerogram. An accelerogram was considered as a non-stationary random process in the course of its decomposition into the envelope and the non-stationary part. This non-stationary random process was presented as a multiplication envelope of a stationary random process. Parameters of exposure of a construction site to the seismic impact can be used to synthesize accelerograms.
DOI: 10.22227/1997-0935.2013.7.59-67
References
- Blater K. Veyvlet-analiz. Osnovy teorii [Wavelet Analysis. Foundations of the Theory]. Moscow, Tekhnosfera Publ., 2007, 280 p.
- Percival D.B., Walden A.T. Wavelet Methods for Time Series Analysis. Cambridge University Press, 2000, 622 p.
- Dobeshi I. Desyat’ lektsiy po veyvletam [Ten Lectures on Wavelets]. Izhevsk, NITs «Regulyarnaya i khaoticheskaya dinamika» publ., 2001, 454 p.
- Addison P.S. The Illustrated Wavelet Transform Handbook. Institute of Physics, 2002, 358 p.
- Goswami J.C., Chan A.K., Fundamentals of Wavelets: Theory, Algorithms and Applications. John Wiley & Sons, Inc., 1999, 359 p.
- Chui C.K. Wavelets: A Mathematical Tool for Signal Analysis, SIAM. Philadelphia, 1997, 228 p.
- Mkrtychev O.V., Reshetov A.A. Primenenie veyvlet-preobrazovaniy pri analize akselerogramm [Application of Wavelet Transformations to the Analysis of Accelerograms]. International Journal for Computational Civil and Structural Engineering. 2011, vol. 7, no. 3, pp. 118—126.
- Mukherjee S., Gupta V.K. Wavelet-based Generation of Spectrum-compatible Time-histories. Soil Dynamics and Earthquake Engineering. 2002, vol. 22, no. 9-12, pp. 799—804.
- Bolotin V.V. Metody teorii veroyatnostey i teorii nadezhnosti v raschetakh sooruzheniy [Methods of the Theory of Probabilities and Theory of Reliability in Analysis of Structures]. Moscow, Stroyizdat Publ., 1982, 351 p.
- Bakalov V.P. Tsifrovoe modelirovanie sluchaynykh protsessov [Digital Modeling of Random Processes]. Moscow, MAI Publ., 2002, 88 p.
-
Mkrtychev Oleg Vartanovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, head, Scientific Laboratory of Reliability and Seismic Resistance of Structures, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), ;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Dzhinchvelashvili Guram Avtandilovich -
Moscow State University of Civil Engineering (MGSU)
Candidate of Technical Sciences, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Busalova Marina Sergeevna -
Moscow State University of Civil Engineering (MGSU)
postgraduate student, Department of Strength of Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The article focuses on the problem of calculating seismic impact on structures. The article studies the impact of structures on the changes in seismic load parameters. Studies are conducted with the use of direct dynamic calculation methods implementing explicit integration schemes equations of motion. Two computational models of monolithic reinforced concrete buildings on elastic half-space are considered: 9 and 16 storeys. The solution of the problem is found in time domain by direct integration of the equations of motion for the explicit scheme using software package LS-DYNA. The foundation simulation is performed using solid finite elements, and the bearing structures of buildings — using solid shell finite elements. The external action applied in the horizontal direction X is shown by accelerogram. Synthesized accelerogram is obtained by the Institute of Physics of the Earth of the Russian Academy of Sciences for Imereti lowland region, city of Sochi. In the study the authors used a specially developed method of calculation based on the algorithm of the base-structure interaction (interface soil-structure interaction). This algorithm can effectively simulate the interaction with linear and nonlinear deformable half-space in the form of a limited array with "transparent" borders. The results show that neglecting the change in external seismic impact parameters caused by the influence of the structures leads to errors in calculation results, which in turn can lead to deficiency of the bearing capacity and seismic resistance of building structures designed in seismic regions. When using the accepted methods of earthquake calculation based on existing regulations, the original design accelerograms should be set considering the dynamic characteristics of the designed buildings.
DOI: 10.22227/1997-0935.2013.12.34-40
References
- Mkrtychev O.V., Dzhinchvelashvili G.A. Raschet zhelezobetonnogo monolitnogo zdaniya na zemletryasenie v nelineynoy postanovke [Calculation of Reinforced Concrete Monolithic Building in Case of Earthquake in Nonlinear Formulation]. Sbornik dokladov Mezhdunarodnoy nauchno-metodicheskoy konferentsii, posvyashchennoy 100-letiyu so dnya rozhdeniya V.N. Baykova. Moskva, 4-5 aprelya 2012 goda [Collected Reports of the International Scientific Conference Dedicated to the 100th Anniversary of V.N. Baykov. Moscow, 4-5 April, 2012]. Moscow, 2012, pp. 283—289.
- Mkrtychev O.V., Dzhinchvelashvili G.A. Otsenka nelineynoy raboty zdaniy i sooruzheniy pri avariynykh vozdeystviyakh [Evaluation of Nonlinear Operation of Buildings and Structures in Emergency Exposures]. Problemy bezopasnosti rossiyskogo obshchestva [Security Problems of the Russian Society]. 2012, no. 3, pp. 17—31.
- Mkrtychev O.V. Otsenka nadezhnosti mnogoetazhnogo zdaniya pri seysmicheskom vozdeystvii na osnove resheniya dinamicheskoy zadachi [Evaluation of a Multi-storey Building Reliability under Seismic Impacts Basing on Dynamic Problem Solution]. Seysmostoykoe stroitel'stvo [Antiseismic Construction]. 2001, no. 2, pp. 33—35.
- Mkrtychev O.V. Raschet bol'sheproletnykh i vysotnykh sooruzheniy na ustoychivost' k progressiruyushchemu obrusheniyu pri seysmicheskikh i avariynykh vozdeystviyakh v nelineynoy dinamicheskoy postanovke [Calculation of Long-span and High-rise Buildings for Resistance to Progressive Collapse under Seismic and Emergency Impacts in Nonlinear
Dynamic Formulation]. Sbornik dokladov nauchnogo seminara «Aktual'nye problemy rascheta zdaniy i sooruzheniy na osobye vozdeystviya (vklyuchaya seysmicheskie i avariynye)». 21 maya 2009 goda [Current Issues of the Analysis of Buildings and Structures in Case of Emergency Effects (Including Seismic and Accidental). Scientific Workshop. May 21, 2009]. Moscow, MGSU Publ., 2009, pp. 1—9.
- Herrera I., Bielak J. Soil-structure Interaction as a Diffraction Problem. Proceedings of the 6th World Conference on Earthquake Engineering. New Delhi, India, 1977, vol. 2, pp. 1467—1472.
- Bielak J., Loukakis K., Hisada Y., Yoshimura C. Domain Reduction Method for Threedimensional Earthquake Modeling in Localized Regions, Part I: Theory. Bulletin of the Seismological Society of America. 2003, vol. 93, no. 2, pp. 817—824.
- Yoshimura C., Bielak J., Hisada Y., Fernandez A. Domain Reduction Method for Threedimensional Earthquake Modeling in Localized Regions, Part II: Verification and Applications. Bulletin of the Seismological Society of America. 2003, vol. 93, no. 2, pp. 825—841.
-
Mkrtychev Oleg Vartanovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, head, Scientific Laboratory of Reliability and Seismic Resistance of Structures, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), ;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Bunov Artem Anatol'evich -
Moscow State University of Civil Engineering (MGSU)
postgraduate student, Department of Strength of Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The article regards calculation of 16-storied building with seismic isolation in the form of elastomeric bearings on two-component accelerograms with different dominant frequencies. The problem was solved in software package LS-DYNA by forth integration of motion equations according to explicit scheme. The research showed the dependence of horizontal displacements of bearing top in relation to bottom at earthquakes given by accelerograms with different spectral structure. The article analyzes the results of the work.
DOI: 10.22227/1997-0935.2014.6.63-70
References
- Popova Zh.S., Pak Hyo Sun, Shishkina A.A., Lovtsov A.D. K seysmoizolyatsii mnogoetazhnogo zdaniya rezinometallicheskimi oporami [Multistoried Building Seismic Isolation by Rubber-Metal Supports]. Dal'niy vostok: problemy razvitiya arkhitekturno-stroitel'nogo kompleksa [Far East: Problems of the Development of Architectural and Construction Complex]. 2013, no. 1, pp. 223—228.
- Mkrtychev O.V., Bunov A.A. Sravnitel'nyy analiz reaktsiy mnogoetazhnykh zhelezobetonnykh zdaniy s sistemoy seysmoizolyatsii i bez nee na seysmicheskoe vozdeystvie [Comparative Analysis of Seismic Impact on Multystoried Ferro-Concrete Buildings with Seismic Isolation System and without it]. 21 vek: fundamental'naya nauka i tekhnologiya : Materialy III Mezhdunarodnoy nauchno-prakticheskoy konferentsii [The 21-st Century: Fundamental Science and Technology: Materials of the III International Science and Practical Conference]. Moscow, 2014, vol. 3, pp. 122—126.
- Murav'ev N.P. Sovremennyy metod seysmoizolyatsii zdaniy na primere RMO [Modern Methods of Seismic Isolation of Buildings by the Example of EBP]. Dal'niy vostok: problemy razvitiya arkhitekturno-stroitel'nogo kompleksa [Far East: Problems of Development of the Architectural and Construction Complex]. 2013, no. 1, pp. 212—218.
- Rumyantsev E.V., Belugina E.A. Modelirovanie konstruktsiy zheleznodorozhnogo terminala stantsii Adler s uchetom sistemy seysmoizolyatsii [Structural Modeling of Adler Railhead Considering Seismic Isolation]. Inzhenernostroitel'nyy zhurnal [Engineering Construction Journal]. 2012, no. 1 (27), pp. 22—30.
- Kharlanov V.L. Chislennoe issledovanie seysmoizolirovannykh sistem [Numeric Research of Seismic Isolation Systems]. Internet-vestnik VolgGASU. Seriya: Stroitel’naya informatika [Internet Reporter of Volgograd State University of Architecture and Civil Engineering. Series: Computer Science in Construction]. 2008, vol. 3 (6). Available at: http://www.vestnik.vgasu.ru. Date of Access: 20.03.2014.
- Ayzenberg Ya.M., Smirnov V.I., Akbiev R.T. Metodicheskie rekomendatsii po proektirovaniyu seysmoizolyatsii s primeneniem rezinometallicheskikh opor [Recommended Practice for Seismic Isolation Design with Elastomeric Bearings]. Moscow, RASS Publ., 2008, 46 p.
- Arutyunyan A.R. Sovremennye metody seysmoizolyatsii zdaniy i sooruzheniy [Modern Methods of Buildings and Constructions Seismic Isolation]. Inzhenerno-stroitel'nyy zhurnal [Engineering Construction Journal]. 2010, no. 3(13), pp. 56—60.
- Ormonbekov T.O., Begaliev U.T., Derov A.V., Maksimov G.A., Pozdnyakov S.G. Primenenie tonkosloynykh rezinometallicheskikh opor dlya seysmozashchity zdaniy v usloviyakh territorii Kyrgyzskoy Respubliki [The Use of Thin Layer Elastomeric Bearings for Seismic Protection in Kyrgyzstan]. Bishkek, Uchkun Publ., 2005, 215 p.
- Chen W.F., Scawthorn Ch., editor. Earthquake Engineering Handbook. Hawaii University, CRC Press LLC, 2003, 1450 p.
- Bathe K.J., Wilson E.L., Numerical Methods in Finite Element Analysis, Prentice-Hall, 1976.
- Hughes N.J.R., Rister K.S., Taylor R.L. Implicit-Explicit Finite Elements in Nonlinear Transient Analysis. Comp. Meth. Appl. Mech. Eng. 1979, no. 17—18, pp. 159—182. DOI: http://dx.doi.org/10.1016/0045-7825(79)90086-0.
- Mkrtychev O.V., Bunov A.A. Sravnitel'nyy analiz raboty seysmoizolyatsii zdaniy v vide rezinometallicheskikh opor na dvukhkomponentnuyu akselerogrammu [Comparative Analysis of Seismic Isolation of Buildings on Two-Component Accelerogram]. Nauka i obrazovanie v sovremennoj konkurentnoj srede: Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Science and Education in Modern Competitive Environment: Materials of International Scientific and Practical Conference]. Ufa, RIO ICIPT Publ., 2014, vol. II, pp. 117—123.
-
Mkrtychev Oleg Vartanovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, head, Scientific Laboratory of Reliability and Seismic Resistance of Structures, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), ;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Andreev Mikhail Ivanovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Master student, Institute of Fundamental Education, engineer, Scientific Laboratory of Reliability and Seismic Resistance of Structures, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The article contains the calculation of a 80-storey high-rise building on 3-component accelerograms with different dominant frequencies. The “Akhmat Tower” belongs to the complex “Grozny-city 2” and is classified as a unique construction, its height is 400 m. During the construction unique high-rise buildings and high-rise buildings in seismic areas an additional computational studies are required, which should take into account the nonlinear nature of the design. For the case of linear instrumental-synthesized accelerograms, it is necessary to apply nonlinear dynamic methods. The studies were conducted using the software LS-DYNA, implementing the methods of direct integration of the equations of motion by the explicit scheme. The constructive scheme of the building frame is braced, the spatial stability is ensured by load-bearing interior walls, columns and hard disks, and frame metal coatings. The choice of the type and dimensions of the finite element and the step of integration is due to the ability to perform calculations in reasonable time, and to the required accuracy of calculation. For this aim the issues of convergence of the solutions on a number of settlement schemes were investigated with the terms of thickened mesh of finite elements: 0.5 m; 1 m; 2 m; 3 m. As a result of the research it was obtained that the best is to split into finite elements with a characteristic size of 2 m. The calculation of the building is made on rigid foundation. The authors used accelerograms normalized for earthquakes of 8 and 9 points on the MSK-64 scale. The destruction of the elements in the process of loading, and the interaction of the elements during their contact was taken into account, i.e. the calculation was made taking into account physical, geometrical and structural nonlinearities. The article analyzes the results of the calculation. The authors evaluated the seismic stability of the building. Possible ways to improve the seismic resistance of the building are suggested.
DOI: 10.22227/1997-0935.2016.6.25-33
References
- Dzhinchvelashvili G.A., Bulushev S.V. Kolebaniya vysotnykh zdaniy pri seysmicheskom vozdeystvii s uchetom fizicheskoy i geometricheskoy nelineynosti [Oscillations of high-rise buildings under seismic influence considering physical and geometric nonlinearity]. Stroitel’stvo: nauka i obrazovanie [Construction: Science and Education]. 2014. no. 2, paper 1. Available at: http://www.nso-journal.ru. (In Russian)
- Mkrtychev O.V., Dzhinchvelashvili G.A. Raschet zhelezobetonnogo monolitnogo zdaniya na zemletryasenie v nelineynoy postanovke [Calculation of Reinforced Concrete Monolityc Building foe Earthquakes in Nonlinear Formulation]. Sbornik dokladov Mezhdunarodnoy nauchno-metodicheskoy konferentsii, posvyashchennoy 100-letiyu so dnya rozhdeniya V.N. Baykova (g. Moskva, 4—5 aprelya 2012 g.) [Collection of Papers of International Research and Methodology Conference Dedicated to 100th Anniversary of V.N. Baykov (Moscow, April 4—5, 2012)]. Moscow, 2012, pp. 283—289. (In Russian)
- Andreeva P.I., Koval’chuk O.A. Sravnitel’nyy analiz rezul’tatov eksperimental’nykh naturnykh dinamicheskikh issledovaniy i rascheta dinamicheskikh kharakteristik vysotnogo zhilogo zdaniya [Comparative Analysis of the Results of Experimental Field Dynamic Investigations and Calculation of Dynamic Characteristics of a High-Rise Residential Building]. International Journal for Computational Civil and Structural Engineering. 2012, vol. 8, no. 4, pp. 13—18. (In Russian)
- Mkrtychev O.V., Mkrtychev A.E. Raschet bol’sheproletnykh i vysotnykh sooruzheniy na ustoychivost’ k progressiruyushchemu obrusheniyu pri seysmicheskikh i avariynykh vozdeystviyakh v nelineynoy dinamicheskoy postanovke [Stability Calculation of Large-Span High-rise Structures for Progressive Collapse in Case of Seismic Emergency Loads in Nonlinear Dynamic Formulation]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 2009, no. 4, pp. 43—49. (In Russian)
- Andreeva P.I. Sravnitel’nyy analiz metodov rascheta na seysmicheskie vozdeystviya [Comparative Analysis of Calculation Methods of Seismic Impacts]. Stroitel’stvo — formirovanie sredy zhiznedeyatel’nosti : sbornik trudov XVII Mezhdunarodnoy Mezhvuzovskoy nauchno-prakticheskoy konferentsii studentov, magistrantov, aspirantov i molodukh uchenykh (g. Moskva, 23—25 aprelya 2014 g.) [Construction — Formation of Living Environment : Collection of Works of the 17th International Interuniversity Science and Practice Conference of students, Master students, postgraduate students and young scientists (Moscow, April 23—25, 2014). Pp. 489—492. (In Russian)
- Trifonov O.V. Modelirovanie dinamicheskoy reaktsii konstruktsiy pri dvukhkomponentnykh seysmicheskikh vozdeystviyakh [Simulating the Dynamic Response of Structures in Case of Two-Component Seismic Effects]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Earthquake Engineering. Constructions Safety]. 2000, no. 1, pp. 42—45. (In Russian)
- Sanaz Rezaeian, Armen Der Kiureghian. Simulation of Synthetic Ground Motions for Specified Earthquake and Site Characteristics. Earthquake Engineering & Structural Dynamics. 2010, vol. 39, no. 10, pp. 1155—1180. DOI: http://dx.doi.org/10.1002/eqe.997.
- Soize C. Information Theory for Generation of Accelerograms Associated with Shock Response Spectra. Computer-Aided Civil and Infrastructure Engineering. 2010, vol. 25, no. 5, pp. 334—347. DOI: http://dx.doi.org/10.1111/j.1467-8667.2009.00643.x.
- Zentner I. Simulation of Non-Stationary Conditional Ground Motion Fields in the Time Domain. Georisk: Assessment and Management of Risk for Engineered Systems and Geo-hazards. 2013, vol. 7, no. 1, pp. 37—48. DOI: http://dx.doi.org/10.1080/17499518.2013.763572.
- Tamrazyan A.G., Tomilin V.A. Nesushchaya sposobnost’ konstruktsiy vysotnykh zdaniy pri lokal’nykh izmeneniyakh fiziko-mekhanicheskikh kharakteristik materialov [Bearing Capacity of High-Rise Building Structures in Case of Local Changes of Physical and Mechanical Characteristics of the Materials]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2007, no. 11, pp. 24—25. (In Russian)
- Ayzenberg Ya.M., Smirnov V.I., Akbiev R.T. Metodicheskie rekomendatsii po proektirovaniyu seysmoizolyatsii s primeneniem rezinometallicheskikh opor [Methodological recommendations on the Design of Seismic Isolation Using Metal-Rubber Supports]. Moscow, RASS Publ., 2008, 46 p. (In Russian)
- Koval’chuk O.A., Zubkov D.A., Andreeva P.I. Issledovanie effektivnosti re'zino-metallicheskikh vibroizolyatorov firmy «Vibroseysmozashchita» primenitel›no k karkasnym zdaniyam, vozvedennym vblizi tonneley metro melkogo zalozheniya [Investigation of the Efficiency of Metal-Rubber Vibration Isolators of “Vibroseysmozashchita” Company for Frame Buildings Built near the Subsurface Tunnels of Subway]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 6, pp. 335—340. (In Russian)
- Mkrtychev O.V., Bunov A.A. Sravnitel’nyy analiz reaktsiy mnogoetazhnykh zhe-lezobetonnykh zdaniy s sistemoy seysmoizolyatsii i bez nee na seysmicheskoe vozdeystvie [Comparative Analysis of the Reactions of Multistoreyed Buildings with Seismic Isolation System and without it on Seismic Effect]. 21 vek: fundamental’naya nauka i tekhnologiya : materialy III Mezhdunarodnoy nauchno-prakticheskoy konferentsii [21st Century: Fundamental Science and Technology: Materials of the 3rd International Science and Practice Conference]. Moscow, 2014, vol. 3, pp. 122—126. (In Russian)
- Rumyantsev E.V., Belugina E.A. Modelirovanie konstruktsiy zheleznodorozhnogo terminala stantsii Adler s uchetom sistemy seysmoizolyatsii [Modeling Structures of Railway Terminal of Adler Station with Account for the System of Seismic Isolation]. Inzhenerno-stroitel’nyy zhurnal [Engineering and Construction Journal]. 2012, no. 1 (27), pp. 22—30. (In Russian)
- Andreev V.I., Dzhinchvelashvili G.A., Kolesnikov A.V. Raschet zdaniy i sooruzheniy na seysmicheskie vozdeystviya s uchetom nelineynykh effektov [Calculation of Seismic Actions on Buildings and Structures with Account of Nonlinear Effects]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century]. 2012, no. 7, pp. 33—35. (In Russian)
- Dzhinchvelashvili G.A., Kolesnikov A.V., Zaalishvili V.B., Godustov I.S. Perspektivy razvitiya sistem seysmoizolyatsii sovremennykh zdaniy i sooruzheniy [Prospects of the Development of the Systems of Seismic Isolation of Modern Buildings and Structures]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Earthquake Engineering. Constructions Safety]. 2009, no. 6, pp. 27—31. (In Russian)
-
Mkrtychev Oleg Vartanovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, head, Scientific Laboratory of Reliability and Seismic Resistance of Structures, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), ;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Busalova Marina Sergeevna -
Moscow State University of Civil Engineering (MGSU)
postgraduate student, Department of Strength of Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
In the article the problem of calculation of the multistoried building on soil with nonlinear properties is considered. As a foundation model the Mor-Coulomb model is applied. This model meets the following main requirements: it is capable to represent the mechanism of deformation of soil realistically; it contains parameters, which can be defined from standard laboratory researches; it has a sinmilarity and simplicity of use from the computing point of view. In the article the influence of fluidifying foundation soil at intensive seismic effect is investigated. In case of strong influences the behavior of soil becomes nonlinear, and the problem of assessing the response of soil becomes significantly complicated: the response depends as on the structure, power and water saturation of soil layers, and on magnitude and frequency structure of seismic influence. At such influences the rheological properties of soil, which is often connected with ground water movements, change. The changes of a phase condition of soil when soil is diluted are possible. As a result, seismic fluidifying of soil is usually accompanied by severe accidents even on aseismic constructions: buildings manage "to drown" or warp. There are even emissions of the diluted soil on a surface, which lead to formation of sandy craters. The catastrophic fluidifying of the water-saturated dusty and sand soil, which has caused victims and huge economic damage, happened at two strong earthquakes of 1964: on March 27 at a coast of Alaska near Anchorage with M = 8,4, and on June 16 in Niigata (Japan) with M = 7,5. Researches are conducted with the use of direct dynamic methods of calculation realizing obvious schemes of integration of the equations of movement.
DOI: 10.22227/1997-0935.2014.5.63-69
References
- Mkrtychev O.V., Dzhinchvelashvili G.A. Raschet zhelezobetonnogo monolitnogo zdaniya na zemletryasenie v nelineynoy postanovke [Calculation of Reinforced Concrete Monolithic Building on Earthquake in Nonlinear Formulation]. Sbornik dokladov Mezhdunarodnoy nauchno-metodicheskoy konferentsii, posvyashchennoy 100-letiyu so dnya rozhdeniya V.N. Baykova. Moskva, 4-5 aprelya 2012 g. [Collected Reports of the International Scientific Conference Dedicated to the 100th Anniversary of V.N. Baykov. Moscow, 4-5 April 2012]. Moscow, 2012, pp. 283—289.
- Mkrtychev O.V., Dzhinchvelashvili G.A. Otsenka nelineynoy raboty zdaniy i sooruzheniy pri avariynykh vozdeystviyakh [Evaluation of Nonlinear Operation of Buildings and Structures at Emergency Exposures]. Problemy bezopasnosti rossiyskogo obshchestva [Security Problems of the Russian Society]. 2012, no. 3, pp. 17—31.
- Mkrtychev O.V. Otsenka nadezhnosti mnogoetazhnogo zdaniya pri seysmicheskom vozdeystvii na osnove resheniya dinamicheskoy zadachi [Reliability Assesment of a Multistoried Building at Seismic Effect Basing on Dynamic Problem Solution]. Seysmostoykoe stroitel'stvo [Antiseismic Construction]. 2001, no. 2, pp. 33—35.
- Voznesenskiy E.A., Kushnareva E.S. Seysmicheskaya razzhizhaemost' gruntov. Inzhenernaya otsenka i klassifitsirovanie [Seismic Soil Liquefaction. Engineering Estimation and Classification]. Inzhenernaya geologiya [Engineering Geology]. 2012, no. 4, pp. 11—23.
- Tyapin A.G. Primer seysmicheskogo rascheta sistemy «sooruzhenie — osnovanie» dlya dvukhopornogo sooruzheniya [Example of Seismic Calculation of a System “Structure — Foundation” for Two-support Structure]. Seysmostoykoe stroitel'stvo. Bezopasnost' sooruzheniy [Antiseismic Construction. Safety of Structures]. 2012, no. 1, pp. 16—25.
- Strokova L.A. Opredelenie parametrov dlya chislennogo modelirovaniya povedeniya gruntov [Determination of the parameters for numerical simulation of soil behavior]. Izvestiya Tomskogo politekhnicheskogo universiteta [Bulletin of the Tomsk Polytechnic University]. 2008, no. 1, vol. 313, pp. 69—74.
- Pavlenko O.V. Uprugaya nelineynost' osadochnykh porod [Elastic Nonlinearity of Sedimentary Rocks]. Doklady akademii nauk [Reports of the Academy of Sciences]. 2003, vol. 389, no. 2, pp. 247—251.
- Pavlenko O.V. O nelineyno-uprugom povedenii gruntov pri sil'nykh zemletryaseniyakh [On Nonlinear-elastic Behavior of Soil at Intensive Earthquakes]. Nauka i tekhnologiya v Rossii [Science and Technology in Russia]. 2002, no. 7(58), 2003, no. 1(59), pp. 9—13.
- Konstantinova T.G. Razzhizhenie gruntov pri sil'nykh zemletryaseniyakh [Fluidifying of Soil at Strong Earthquakes]. Innovatsii v nauke: materialy XVIII Mezhdunarodnoy zaochnoy nauchno-prakticheskoy konferentsii [Innovations in Science: Materials of the 18th International Virtual Scientific and Practical Conference]. Novosibirsk, Sibak Publ., 2013. Available at: http://sibac.info/index.php/2009-07-01-10-21-16/7625-2013-04-30-09-06-50.
- Khavroshkin O.B., Tsyplakov V.V. Nelineynaya seysmologiya: nekotorye fundamental'nye i prikladnye problemy razvitiya [Nonlinear Seismology: Some Fundamental and Applied Problems of Development]. Fundamental'nye nauki — narodnomu khozyaystvu [Fundamental Sciences to National Economy]. Moscow, 1990, pp. 363—367.
- Basu U., Chopra A.K. Perfectly Matched Layers for Transient Elastodynamics of Unbounded Domains. International Journal for Numerical Methods in Engineering. 2004, vol. 59, no. 8, pp. 1039—1074. DOI: 10.1002/nme.896.
- Basu U. Explicit Finite Element Perfectly Matched Layer for Transient Three-dimensional Elastic Waves. International Journal for Numerical Methods in Engineering. 2009, vol. 77, no. 2, pp. 151—176. DOI: 10.1002/nme.2397.
- Herrera I., Bielak J. Soil-structure Interaction as a Diffraction Problem. Proceedings of the 6th World Conference on Earthquake Engineering. New Delhi, India, 1977, vol. 2, pp. 1467—1472.
- Bielak J., Loukakis K., Hisada Y., Yoshimura C. Domain Reduction Method for Threedimensional Earthquake Modeling in Localized Regions, Part I: Theory. Bulletin of the Seismological Society of America. 2003, vol. 93, no. 2, pp. 817—824. DOI: 10.1785/0120010251.
- Yoshimura C., Bielak J., Hisada Y., Fernandez A. Domain Reduction Method for Three-dimensional Earthquake Modeling in Localized Regions, Part II: Verification and Applications. Bulletin of the Seismological Society of America. 2003, vol. 93, no. 2, pp. 825—841. DOI: 10.1785/0120010252.