DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Using wavelet analysisto obtain characteristics of accelerograms

Vestnik MGSU 7/2013
  • Mkrtychev Oleg Vartanovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, head, Scientific Laboratory of Reliability and Seismic Resistance of Structures, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Reshetov Andrey Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, engineer, Research Laboratory “Reliability and Earthquake Engineering”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 59-67

Application of accelerograms to the analysis of structures, exposed to seismic loads, and generation of synthetic accelerograms may only be implemented if their varied characteristics are available. The wavelet analysis may serve as a method for identification of the above characteristics. The wavelet analysis is an effective tool for identification of versatile regularities of signals. Wavelets can be used to detect inflection points, extremes, etc. Also, wavelets can be used to filter signals.The authors discuss particular theoretical principles of the wavelet analysis and the multiresolution analysis. The authors present formulas designated for the practical application. The authors implemented a wavelet transform in respect of a specific accelerogram.The recording of the horizontal component (N00E) of the Spitak earthquake (Armenia, 1988) was exposed to the analysis as an accelerogram. An accelerogram was considered as a non-stationary random process in the course of its decomposition into the envelope and the non-stationary part. This non-stationary random process was presented as a multiplication envelope of a stationary random process. Parameters of exposure of a construction site to the seismic impact can be used to synthesize accelerograms.

DOI: 10.22227/1997-0935.2013.7.59-67

References
  1. Blater K. Veyvlet-analiz. Osnovy teorii [Wavelet Analysis. Foundations of the Theory]. Moscow, Tekhnosfera Publ., 2007, 280 p.
  2. Percival D.B., Walden A.T. Wavelet Methods for Time Series Analysis. Cambridge University Press, 2000, 622 p.
  3. Dobeshi I. Desyat’ lektsiy po veyvletam [Ten Lectures on Wavelets]. Izhevsk, NITs «Regulyarnaya i khaoticheskaya dinamika» publ., 2001, 454 p.
  4. Addison P.S. The Illustrated Wavelet Transform Handbook. Institute of Physics, 2002, 358 p.
  5. Goswami J.C., Chan A.K., Fundamentals of Wavelets: Theory, Algorithms and Applications. John Wiley & Sons, Inc., 1999, 359 p.
  6. Chui C.K. Wavelets: A Mathematical Tool for Signal Analysis, SIAM. Philadelphia, 1997, 228 p.
  7. Mkrtychev O.V., Reshetov A.A. Primenenie veyvlet-preobrazovaniy pri analize akselerogramm [Application of Wavelet Transformations to the Analysis of Accelerograms]. International Journal for Computational Civil and Structural Engineering. 2011, vol. 7, no. 3, pp. 118—126.
  8. Mukherjee S., Gupta V.K. Wavelet-based Generation of Spectrum-compatible Time-histories. Soil Dynamics and Earthquake Engineering. 2002, vol. 22, no. 9-12, pp. 799—804.
  9. Bolotin V.V. Metody teorii veroyatnostey i teorii nadezhnosti v raschetakh sooruzheniy [Methods of the Theory of Probabilities and Theory of Reliability in Analysis of Structures]. Moscow, Stroyizdat Publ., 1982, 351 p.
  10. Bakalov V.P. Tsifrovoe modelirovanie sluchaynykh protsessov [Digital Modeling of Random Processes]. Moscow, MAI Publ., 2002, 88 p.

Download

REPRESENTATIVE SET OF EARTHQUAKE ACCELEROGRAMMS FOR STRUCTURAL ENGINEERING OF BUILDINGS AND STRUCTURES DURING EARTHQUAKE EFFECTS

Vestnik MGSU 7/2017 Volume 12
  • Mkrtychev Oleg Vartanovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Head of Research Laboratory “Reliability and Earthquake Engineering”, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Reshetov Andrey Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Engineer, Research Laboratory “Reliability and Earthquake Engineering”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 754-760

In the process of structural engineering of buildings and structures with the use of direct dynamic methods the accelerogramms of earthquakes with the parameters corresponding to a specific construction site are required. Such accelerogramms could be obtained by various methods. For example, they could be produced by seismologists. However, for a structural engineer it could be required to get them processed (balancing, segregation of separate phase of impact, etc.), that is not always convenient to do. Moreover, an accelerogramm with slightly different spectral composition and lifespan, nevertheless applicable to a given construction site, could be required. Also an accelerogramm could be generated with the use of specially designed software. Although it’s not always convenient as it requires certain amount of time and could cause some difficulties during formation of original data for generation and also for obtaining correct results. In order to overcome the above-mentioned difficulties the authors proposed the representative set of synthesized earthquake accelerogramms which could be applied for various combinations of seismic properties of construction sites. The present article sets outs the principal approaches to formation of the set of earthquake accelerogramms, designated for design of buildings and structures in terms of earthquake effects. Purpose requirements to discrete accelerogramms and to the set as a whole have been disclosed, purpose characteristics of accelerogramms have been set out, clarifications and recommendations for application of the representative set of accelerogramms in practical calculations have been enclosed.

DOI: 10.22227/1997-0935.2017.7.754-760

Download

Results 1 - 2 of 2