Using hardening soil model for describing the behavior of varied density sandunder the load

Vestnik MGSU 2/2014
  • Orekhov Vyacheslav Valentinovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, chief research worker, Scientific and Technical Center “Examination, Design, Inspection”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Orekhov Mikhail Vyacheslavovich - Moscow State University of Civil Engineering (MGSU) leading engineer, Scientific and Technical Center “Expertise, Design, Inspection”, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, 129337, Moscow, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 91-97

The authors analyze the Hardening Soil Model possibilities for describing the soil behavior under the load, using numerical simulation of the stabilometric tests for varied density sand.According to the study, the assumption that dilatancy angle stays constant is correct only for the dense soil. On the other hand, for the loose or medium density soil this assumption is unacceptable. For the loose and medium density sands, the calculation error in volumetric strain analysis may exceed 50 %.In order to assess the adequacy of soil behavior description in the calculations using the model of "Hardening Soil" numerical simulations were performed using Plaxis triaxial testing of soil. In deviatoric loading the loose soil consolidants, the dilatancy development in the sand of average density has an alternating pattern, the dense sand deconsolodates. The values parameters of the model "Hardening Soil" were determined by the results of experimental data obtained in the AO «NIIES» in triaxial tests the «Liuberetskii» sand and on the recommendations of the program Plaxis. As the results of numerical studies, the soil model "Hardening Soil" describes quite well the development of volumetric strain with the full compressing the soil and the development of shear deformations in the deviatoric loading.In the case of deviatoric loading the relationship between the centerline and the volume deformation is essentially non-linear (Fig. 3a), in contrast to the theoretical assumption of constancy of the angle of dilatancy. In the dense sand at the approach to the limiting value the increment of volume strain (by absolute value) increases, and in the loose sand decreases.

DOI: 10.22227/1997-0935.2014.2.91-97

  1. Schanz T., Vermeer P.A., Bonnier P.G. The Hardening Soil Model: Formulation and Verification. Beyond 2000 in Computational Geotechnics. Balkema, Rotterdam, 1999, pp. 281—290.
  2. Schanz T. Zur Modellierung des mechanischen Verhaltens von Reibungsmaterialien. Mitt. Inst. f. Geotechnik, Universit?t Stuttgart, Stuttgart, 1998.
  3. Duncan J.M., Chang C.Y. Nonlinear Analysis of Stress and Strain in Soils. ASCE Journal of the Soil Mechanics and Foundations Division, 1970, vol. 96, no. 5, pp. 1629—1653.
  4. Brinkgreve R.B.J., Broere W., Waterman D. 2008. Plaxis 2D-version 9. Finite Element Code for Soil and Rock Analyses. User Manual. Rotterdam, Balkema.
  5. Strokova L.A. Opredelenie parametrov dlya chislennogo modelirovaniya povedeniya gruntov [Determination of the Parameters for the Numerical Simulation of the Behavior of Soils]. Izvestiya Tomskogo politekhnicheskogo universiteta [News of Tomsk Polytechnic University]. 2008, vol. 313, no. 1, pp. 69—74.
  6. Slivets K.V. Opredelenie vnutrennikh parametrov modeli Hardening Soil Model [Determining Inner Parameters of Hardening Soil Model]. Geotekhnika [Geotechnics]. 2010, no. 6, pp. 55—59.
  7. Ohde J.Zur. Theorie der Druckverteilung im Baugrund. Der Bauingenieur. 1939, vol. 20, pp. 451—453.
  8. Zaretskiy Yu.K. Vyazko-plastichnost' gruntov i raschety sooruzheniy [Viscoplasticity of Soils and Calculations of Constructions]. Moscow, Stroyizdat Publ., 1988.
  9. Zaretskiy Yu.K., Vorontsov E.I., Malyshev M.V., Ramadan I.Kh. Deformiruemost' i prochnost' peschanogo grunta v usloviyakh ploskoy deformatsii pri razlichnykh traektoriyakh nagruzheniya [Deformability and Strength of Sand Soil in the Conditions of Plain Deformation in Case of Different Loading Trajectories]. Osnovaniya, fundamenty i mekhanika gruntov [Bases, Foundations and Soil Engineering]. 1981, no. 3, pp. 34—38.
  10. Zaretskiy Yu.K., Lombardo V.N. Statika i dinamika gruntovykh plotin [Statics and Dynamics of Ground Dams]. Moscow, Energoatomizdat Publ., 1983.


Results 1 - 1 of 1