RESEARCH OF BUILDING MATERIALS

Function of the demagnetization factor in respect of a quasi-solid filtermatrix of a magnetic separator

Vestnik MGSU 7/2013
  • Sandulyak Anna Aleksandrovna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Associate Professor, Department of Construction Materials; 7 (499) 183-32-29, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 121-130

The author presents the prospects for the use of a magnetic separator, equipped with a filter matrix, in the treatment of ceramic suspensions and minerals. Particles of ferromagnetic impurities are captured by matrix pores, when purified media is transmitted through the magnetized filter matrix. The particle capture efficiency depends on the level of the filter matrix magnetization. The intensity of demagnetization influences the filter matrix magnetization intensity. Unfortunately, many researchers frequently ignore the demagnetization factor of a filter matrix as a specific (granulated) magnet.The effect of self-demagnetization is studied in terms of homogeneous (solid) magnets. The effect of self-demagnetization means that poles emerge on the borders of magnetized “short” magnets. Thus, a strong inner demagnetization field emerges. The main parameter of this physical characteristic of sample-magnets is the coefficient of demagnetization, which relates the intensity of the demagnetization field and the magnetization intensity of a sample body. The author considers the relevant issue of influence of the demagnetization intensity on the average values of the magnetic permeability of porous (quasi-solid) magnets, for example, a filter matrix. This dependence is relevant for the calculation of magnetic permeability values.

DOI: 10.22227/1997-0935.2013.7.121-130

References
  1. Ivanov A.A. Srednee pole v opisanii magnitnoy struktury ul’tradispersnykh magnetikov [Mean Field in Description of the Magnetic Structure of Ultrafine Magnetic Materials]. Fizika metallov i metallovedenie [Physics of Metals and Metal Science]. 2007, vol. 104, no. 5, pp. 465—470.
  2. Ivanov A.A., Orlov V.A., Patrushev G.O. Svoystva effektivnoy anizotropii magnitnykh blokov v ul’tradispersnykh ferromagnetikakh [Properties of Effective Anisotropy of Magnetic Blocks of Ultrafine Ferrous Magnetic Materials]. Fizika metallov i metallovedenie [Physics of Metals and Metal Science]. 2007, vol. 103, no. 3, pp. 229—237.
  3. Meylikhov E.Z., Farzetdinova R.M. Obobshchennaya teoriya srednego polya dlya reshetochnykh magnitnykh sistem i ferromagnetizm poluprovodnikov s magnitnymi primesyami [Generalized Mean Field Theory for Latticed Magnetic Systems and Ferromagnetism of Semicondictors Having Magnetic Admixtures]. Fizika tverdogo tela [Solid State Physics]. 2005, vol. 47, no. 6, pp. 1085—1091.
  4. Trukhan S.N., Mart’yanov O.N., Yudanov V.F. Skachkoobraznoe namagnichivanie dispersnykh ferromagnetikov, obuslovlennoe magnitnymi mezhchastichnymi vzaimodeystviyami [Uneven Magnetization of Disperse Ferrous Magnetic Materials Caused by Magnetic Interparticle Interactions]. Fizika tverdogo tela [Solid State Physics]. 2008, vol. 50, no. 3, pp. 440—445.
  5. Komogortsev S.V., Iskhakov R.S. Krivaya namagnichivaniya i magnitnye korrelyatsii v nanotsepochke ferromagnitnykh zeren so sluchaynoy anizotropiey [Magnetization Curve and Magnetic Correlations of Ferrous Magentic Grains Having Random Anisotropy]. Fizika tverdogo tela [Solid State Physics]. 2005, vol. 47, no. 3, pp. 480—486.
  6. Bespyatykh Yu.I., Bugaev A.S., Dikshteyn I.E. Poverkhnostnye polyaritony v kompozitnykh sredakh s vremennoy dispersiey dielektricheskoy i magnitnoy pronitsaemostey [Surface Polaritons in Commposite Media Having Temporary Dispersion of Dielectric and Magnetic Permeability]. Fizika tverdogo tela [Solid State Physics]. 2001, vol. 43, no. 11, pp. 2043—2047.
  7. Meylikhov E.Z. Magnitnye svoystva granulyarnykh ferromagnetikov [Magnetic Properties of Granulated Ferrous Magnetic Materials]. Zhurnal eksperimental’noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 1999, vol. 116, no. 6(12), pp. 2182—2191.
  8. Meylikhov E.Z., Farzetdinova R.M. Reshetki nesfericheskikh ferromagnitnykh granul s magnitodipol’nym vzaimodeystviem – teoriya i eksperimental’nye primery [Lettices of Non-spherical Ferromagnetic Granules Demonstrating Magnetodipole Interaction: Theory and Experimental Examples]. Zhurnal eksperimental’noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2002, vol. 122, no. 5(11), pp. 1027—1043.
  9. Zubarev A.Yu. Reologicheskie svoystva polidispersnykh magnitnykh zhidkostey. Vliyanie tsepochechnykh agregatov [Rheological Properties of Polydisperse Magnetic Liquids. Influence of Chain Aggregates]. Zhurnal eksperimental’noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2001, vol. 120, no. 1(7), pp. 94—103.
  10. Meylikhov E.Z. Magnitnoe uporyadochenie v sluchaynoy sisteme tochechnykh izingovskikh dipoley [Magnetic Ordering in the Random System of Ising Point Dipoles]. Zhurnal eksperimental’noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2003, vol. 124, no. 3(9), pp. 650—655.
  11. Balagurov B.Ya., Kashin V.A. Strukturnye fluktuatsii polya i toka v zadache o provodimosti neodnorodnykh sred. Teoriya i chislennyy eksperiment [Structural Fluctuations of the Field and Current within the Framework of the Problem of Conductivity of Heterogeneous Media. Theory and Numerical Experiment]. Zhurnal eksperimental’noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2003, vol. 124, no. 5(11), pp. 1138—1148.
  12. Snarskiy A.A., Shamonin M.V., Zhenirovskiy M.I. Effektivnye svoystva makroskopicheski neodnorodnykh ferromagnitnykh kompozitov. Teoriya i chislennyy eksperiment [Effective Properties of Macroscopically Heterogeneous Ferromagnetic Composites. Theory and Numerical Experiment]. Zhurnal eksperimental’noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2003, vol. 123, no. 1, pp. 79—91.
  13. Frolov G.I. Magnitnye svoystva nanokristallicheskikh plenok 3d-metallov [Magnetic Properties of Nano-crystalline films of 3D Metals]. Zhurnal tekhnicheskoy fiziki [Journal of Applied Physics]. 2004, vol. 74, no. 7, pp. 102—109.
  14. Bakaev V.V., Snarskiy A.A., Shamonin M.V. Magnitnaya pronitsaemost’ i ostatochnaya namagnichennost’ dvukhfaznoy sluchayno neodnorodnoy sredy [Magnetic Permeability- and Residual Magnetism of Biphase Randomly Heterogeneous Media]. Zhurnal tekhnicheskoy fiziki [Journal of Applied Physics]. 2002, vol. 72, no. 1, pp. 129—131.
  15. Dovzhenko A.Yu., Zhirkov P.V. Vliyanie vida chastits na obrazovanie perkolyatsionnogo klastera [Particle Type Influence on Formation of Percolation Clusters]. Zhurnal tekhnicheskoy fiziki [Journal of Applied Physics]. 1995, vol. 65, no. 10, pp. 201—206.
  16. Meylikhov E.Z. Termoaktivnaya provodimost’ i vol’t-ampernaya kharakteristika dielektricheskoy fazy granulirovannykh metallov [Heating Conductivity and Current-voltage Characteristics of the Dielectric Phase of Granulated Metals]. Zhurnal eksperimental’noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 1999, vol. 115, no. 4, pp. 1484—1496.
  17. Lutsev L.V. Spinovye vozbuzhdeniya v granulirovannykh strukturakh s ferromagnitnymi nanochastitsami [Spine Impulses in Granulated Structures Having Ferromagnetic Nanosize Particles]. Fizika tverdogo tela [Solid State Physics]. 2002, vol. 44, no. 1, pp. 97—105.
  18. J.-L. Mattei, M. Le Floc’h. Percolative Behaviour and Demagnetizing Effects in Disordered Heterostructures. Journal of Magnetism and Magnetic Materials. 2003, no. 257, pp. 335—345.
  19. Gorkunov E.S., Zakharov V.A., Chulkina A.A. and Ul’yanov A.I. Internal Demagnetization Factor for Porous Ferromagnets in Remagnetization Process. Russian Journal of Non-destructive Testing. 2004, vol. 40, no. 1, pp. 1—7.
  20. Sandulyak A.V., Sandulyak A.A., Ershova V.A. Pory-«trubki» granulirovannoy sredy [Pipe-shaped Pores of the Granulated Media]. Khimicheskaya promyshlennost’ segodnya [Chemical Industry Today]. 2006, no, 1, pp. 44—50.
  21. Mozhaev A.P. Khaoticheskie gomogennye poristye sredy [Chaotic Homogeneous Porous Media]. Inzhenerno-fizicheskiy zhurnal [Journal of Engineering Physics]. 2001, vol. 74, no. 5, pp. 196—200.
  22. Sandulyak A.V., Sandulyak A.A., Ershova V.A. Funktsional’naya popravka v klassicheskoe vyrazhenie dlya sredney skorosti potoka v granulirovannoy, plotno upakovannoy srede [Functional Adjustment to the Classical Formulation of the Average Flow Velocity in the Granulated Close-packed Media]. Teoreticheskie osnovy khimicheskoy tekhnologii [Theoretical Fundamentals of the Chemical Technology]. 2008, vol. 42, no. 2, pp. 231—235.
  23. Kovenskiy G.I. Osobennosti dvizheniya tsirkuliruyushchego psevdoozhizhennogo sloya v krupnoob''emnoy sharovoy nasadke [Features of the Motion Pattern of the Circulating Pseudo-liquified Layer in the Large-volume Ball Nozzle]. Inzhenerno-fizicheskiy zhurnal [Journal of Engineering Physics]. 2004, vol. 77, no. 1, pp. 93—95.
  24. Teplitskiy Yu.S. O teploobmene v trube, zapolnennoy zernistym sloem [On Heat Exchange In the Pipe Filled by the Granulated Layer]. Inzhenerno-fizicheskiy zhurnal [Journal of Engineering Physics]. 2004, vol. 77, no. 1, pp. 86—92.
  25. Dik I.G., Purevzhav D., Kilimnik D.Yu. K teorii poristosti melkozernistykh sedimentov [To the Porosity Theory of Fine-grained Sediments]. Inzhenerno-fizicheskiy zhurnal [Journal of Engineering Physics]. 2004, vol. 77, no. 1, pp. 77—85.
  26. Mozhaev A.P. Khaoticheskie gomogennye poristye sredy. Teploobmen v yacheyke. [Chaotic Homogeneous Porous Media. Heat Exchange in the Cell.] Inzhenerno-fizicheskiy zhurnal [Journal of Engineering Physics]. 2004, vol. 77, no. 1, pp. 69—76.
  27. Teplitskiy Yu.S. O teploobmene infil’truemogo zernistogo sloya s poverkhnost’yu [About Heat Echange between the Filtered Granulated Layer and the Surface]. Inzhenernofizicheskiy zhurnal [Journal of Engineering Physics]. 2003, vol. 76, no. 6, pp. 151—155.
  28. Beloborodov V.V. Energeticheskie kharakteristiki massoperenosa v tverdykh poristykh telakh [Energy Characteristics of the Mass Transfer in Solid Porous Bodies]. Inzhenerno-fizicheskiy zhurnal [Journal of Engineering Physics]. 2000, vol. 73, no. 2, pp. 283—287.
  29. Du-Xing Chen, Brug J.A., Goldfarb R.B. Demagnetizing Factors for Cylinders. IEEE Transactions on Magnetics. 1991, vol. 27, no. 4, pp. 3601—3619.
  30. Rostami Kh.R. Effektivnyy razmagnichivayushchiy faktor kvazimonokristallicheskikh i granulirovannykh tonkikh diskov [Effective Demagnetizing Factor for Thin Quazi-monocrystalline and Granulated Disks]. Zhurnal eksperimental’noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2005, vol. 128, no. 4 (10), pp. 760—767.
  31. Sandulyak A.A., Ershova V.A., Ershov D.V., Sandulyak A.V. O svoystvakh «korotkikh» granulirovannykh magnetikov s neuporyadochennymi tsepochkami granul: pole mezhdu granulami [About the Properties of “Short” Granulated Magnets Having Irregular Chains of Granules: the Field between the Granules]. Fizika tverdogo tela [Solid State Physics]. 2010, vol. 52, no.10, pp. 1967—1974.
  32. Sandulyak A.V., Sandulyak A.A., Ershova V.A. Razmagnichivayushchiy faktor granulirovannogo magnetika (fil’truyushchey matritsy) kak zhguta kanalov namagnichivaniya [Demagnetizing Factor of the Granulated Magnet (Filtering Matrix) as the Bunch of Magnetizing Channels.] Izvestiya MGTU «MAMI» [News of Moscow State Technical University “MAMI”]. 2011, no. 1(11), pp. 210—216.

Download

Analytical description of the coefficient of demagnetization for chains of cores of granulesin the filter matrix of a magnetic separator

Vestnik MGSU 9/2013
  • Sandulyak Anna Aleksandrovna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Associate Professor, Department of Construction Materials; 7 (499) 183-32-29, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 62-69

Particle capturing efficiency inside the filter matrix of a magnetic separator used in the treatment of ceramic suspensions, minerals, condensates, other liquids and gas depends immediately on the intensity of its magnetization capacity. Chains of granules of a filter matrix represent effective magnetization channels. Demagnetization intensity influences the magnetization intensity of the whole filter matrix and its separate chains that are also considered as magnetization channels. The pattern of calculation of demagnetization factor N (coefficient of demagnetization) for such channel magnets is of utmost academic interest, and this pattern is provided in this article. The author provides values for demagnetization factor N for quasi solid cores ofchains of granules having with various lengths L and diameters d (metal concentra-tion 0.78—0.99), if magnetized by the field having the intensity of Н =18–175 kА/m. It isproven that the values of N and √ L / d have an exponential relation.Earlier, the author identified that the values of N for the porous media having a cylindrical form depend on the ratio of the length of magnet L to its diameter D . It is proven that the values of N and those of √ L / D also have an exponential relation. Therefore, this reciprocal conformity of relations in respect of the demagnetization factor for samples of the granulated medium (consisting of chains of magnets-channels) and for cores of magnets-channels (having different porosity values) has confirmed the similarity of the demagnetization factor for magnets having substantial and high concentration of the ferromagnetic material. The analytical description (the formula) of the coefficient of demagnetization of channel cores is provided in the article.

DOI: 10.22227/1997-0935.2013.9.62-69

References
  1. Sandulyak A.V. Model' namagnichivaniya poristoy sredy [Model of Magnetization of the Porous Medium]. Zhurnal tekhnicheskoy fiziki [Journal of Applied Physics]. 1982, vol. 52, no. 11, pp. 2267—2269.
  2. Sandulyak A.V., Sandulyak A.A., Ershova V.A. Krivaya namagnichivaniya granulirovannoy sredy s pozitsiy modeli pokanal'nogo namagnichivaniya (novyy podkhod) [Granulated Media Magnetization Curve Simulated Using the Channel-by-channel Magnetization Model (a New Approach)]. Doklady Akademii nauk [Reports of the Academy of Sciences]. 2007, vol. 413, no. 4, pp. 469—471.
  3. Sandulyak A.V., Sandulyak A.A., Ershova V.A. K voprosu o modeli pokanal'nogo namagnichivaniya granulirovannoy sredy (s radial'nym profilem pronitsaemosti kvazisploshnogo kanala) [On the Issue of the Model of Channel-by-channel Magnetization of the Granulated Media (Having a Radial Profile of Permeability of the Quasi-continuous Channel)]. Zhurnal tekhnicheskoy fiziki [Journal of Applied Physics]. 2009, vol. 79, no. 5, pp. 140—143.
  4. Sandulyak A.A., Ershova V.A., Ershov D.V., Sandulyak A.V. O svoystvakh «korotkikh» granulirovannykh magnetikov s neuporyadochennymi tsepochkami granul: pole mezhdu granulami [On the Properties of “Short” Granulated Magnets Having Irregular Chains of Granules: Field between Granules]. Fizika tverdogo tela [Physics of Solids]. 2010, vol. 52, no. 10, pp. 1967—1974.
  5. Meylikhov E.Z., Farzetdinova R.M. Obobshchennaya teoriya srednego polya dlya reshetochnykh magnitnykh sistem i ferromagnetizm poluprovodnikov s magnitnymi primesyami [Generalized Theory of the Mean Field for Latticed Magnetic Systems of Ferromagnetism of Semiconductors Having Magnetic Admixtures]. Fizika tverdogo tela [Physics of Solids]. 2005, vol. 47, no. 6, pp. 1085—1091.
  6. Komogortsev S.V., Iskhakov R.S. Krivaya namagnichivaniya i magnitnye korreyatsii v nanotsepochke ferromagnitnykh zeren so sluchaynoy anizotropiey [Magnetization Curve and Magnetic Correlations in the Nano-scale Chain of Ferromagnetic Grains Having Random Anisotropy]. Fizika tverdogo tela [Physics of Solids]. 2005, vol. 47, no. 3, pp. 480—486.
  7. Andreenko A.S., Berezovets V.A., Granovskiy A.B. Inversnoe magnitosoprotivlenie v magnitnykh granulirovannykh kompozitakh (FeCoB)-(Al2O3) [Inverse Resistance to Magnetization inside Magnetic Granulated Composites (FeCoB)-(Al2O3)]. Fizika tverdogo tela [Physics of Solids]. 2003, vol. 45, no. 8, pp. 1446—1449.
  8. Zubarev A.Yu. Reologicheskie svoystva polidispersnykh magnitnykh zhidkostey. Vliyanie tsepochechnykh agregatov. [Rheological Properties of Polydisperse Magnetic Liquids. Influence of Chain Aggregates]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2001, vol. 120, no. 1(7), pp. 94—103.
  9. Granovskiy A.B., Bykov I.V., Gan'shina E.A. Magnitorefraktivnyy effekt v magnitnykh nanokompozitakh [Magnetorefractive Effect in Magnetic Nano-scale Composites]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2003, vol. 123, no. 6, pp. 1256—1265.
  10. Kashevskiy B.E., Prokhorov I.V. Magnitoforeticheskiy potentsial tsepochki ferromagnitnykh sharov v odnorodnom pole [Magnitophoresis Potential of a Chain of Ferromagnetic Balls in the Homogeneous Field]. Inzhenerno-fizicheskiy zhurnal [Journal of Engineering and Physics]. 2003, vol. 76, no. 4, pp. 30—35.
  11. Meylikhov E.Z., Farzetdinova R.M. Osnovnoe sostoyanie reshetok ferromagnitnykh granul s magnitodipol'nym vzaimodeystviem [Principal State of Lattices of Ferromagnetic Granules Exposed to Magnetic Dipolar Interaction]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2002, vol. 121, no. 4, pp. 875—883.
  12. Zubarev A.Yu., Iskakova L.Yu. K teorii fizicheskikh svoystv magnitnykh zhidkostey s tsepochechnymi agregatami [On the Theory of Physical Properties of Magnetic Liquids Having Chain Aggregates]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 1995, vol. 107, no. 5, pp. 1534—1551.
  13. Yurishchev M.A. Magnitnaya vospriimchivost' kvaziodnomernykh superantiferromagnetikov Izinga. Approksimatsii tsepochechnymi klasterami. [Magnetic Susceptibility of Ising Quazi-one-dimensional Super Ferrous Magnets. Approximations by Chain Clusters]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2005, vol. 128, no. 6 (12), pp. 1227—1242.
  14. Sandulyak A.V., Sandulyak A.A., Ershova V.A. Razmagnichivayushchiy faktor granulirovannogo magnetika (fil'truyushchey matritsy) kak zhguta kanalov namagnichivaniya [Demagnetization Factor of the Granulated Magnet (Filter Matrix) as the Strap of Magnetization Channels]. Izvestiya MGTU «MAMI» [News of Moscow State Technical University “MAMI”]. 2011, no. 1(11), pp. 210—216.
  15. Mattei J.-L., Le Floc'h M. Percolative Behaviour and Demagnetizing Effects in Disordered Heterostructures. Journal of Magnetism and Magnetic Materials. 2003, no. 257, pp. 335—345.
  16. Gorkunov E.S., Zakharov V.A., Chulkina A.A., and Ul’yanov A.I. Internal Demagnetization Factor for Porous Ferromagnets in Remagnetization Process. Russian Journal of Nondestructive Testing. 2004, vol. 40, no.1, pp. 1—7.
  17. Kifer I.I. Ispytaniya ferromagnitnykh materialov [Testing of Ferromagnetic Materials]. Moscow, Energiya Publ., 1969, 360 p.
  18. Chen D.-X., Pardo E., Sanchez A. Fluxmetric and Magnetometric Demagnetizing Factors for Cylinders. Journal of Magnetism and Magnetic Materials. 2006, no. 306, pp. 135—146.

Download

Results 1 - 2 of 2