Fundamentalsof calculations of a vibration-induced smoothingrack for a concrete spreader

Vestnik MGSU 9/2013
  • Kapyrin Pavel Dmitrievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, chair, Department of Mechanization of Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Stepanov Mikhail Alekseevich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Chair, Department of Mechanical Equipment, Details of Machines, and Technology of Metals; Director, Department of Research and Technology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 47-55

The essence of the new development, proposed by the co-authors, consists in the following engineering solution: a concrete spreader, designated for the molding of products to be made of concrete mixtures and composed of a self-moving gantry, is equipped with a hoisting smoothing mechanism and a cart having a travel mechanism that has a roll-over hopper and a dispenser with a shutter, that is kinematically connected to the power engine. The shutter has an elastoplastic lining. The hoisting smoothing mechanism represents a rack having rigidly connected top and bottom plates. The longitudinal groove of the smoothing plate has teeth with a conical body. The teeth are attached to the springs hinged to the bottom surface of the top plate rigidly connected to the rod of the hydrocylinder and a frame installed on the guide of the gantry. The proposed construction of the vibration-induced smoothing rack of a concrete spreader improves the quality of the smoothed surface of concrete mixtures thanks to the higher intensification and compaction of the concrete mixture surface because of deeper penetration of vibrations into inner concrete layers and higher pressure produced on the concrete mixture.

DOI: 10.22227/1997-0935.2013.9.47-55

  1. Mikhaylov K.V. Zhelezobeton v XX veke [Reinforced Concrete in the 20ieth Century]. Moscow, Gotika Publ., 2001, 683 p.
  2. Chaus K.V., Chistov Yu.D., Labzina Yu.V. Tekhnologiya proizvodstva stroitel'nykh materialov, izdeliy i konstruktsiy [Technology of Production of Construction Materials, Products and Structures]. Moscow, Stroyizdat Publ., 1988, 448 p.
  3. Bogdanov V.S., Sharapov R.R., Fadin Yu.M., Semikopenko I.A., Nesmeyanov N.P., Gerasimenko V.B. Osnovy rascheta mashin i oborudovaniya predpriyatiy stroitel'nykh materialov i izdeliy [Fundamentals of Calculations of Machinery and Items of Equipment by Enterprises Engaged in Production of Construction Materials and Products]. Stary Oskol, TNT Publ., 2012, 680 p.
  4. Zhuravlev M.I., Folomeev A.A. Mekhanicheskoe oborudovanie predpriyatiy vyazhushchikh materialov i izdeliy na baze ikh [Mechanical Equipment at Enterprises Engaged in Production of Viscous Materials and Products Made of Viscous Materials]. Moscow, Vysshaya shkola publ., 2005, 233 p.
  5. Hammond G., Jones C. 2008. Inventory of Carbon and Energy. University of Bath.
  6. Kapyrin P.D. Betonoukladchik dlya formovaniya izdeliy iz betonnykh smesey [Concrete Spreader Designated for Molding of Products Made of Concrete Mixtures]. Patent Issued to Protect the Utility Model no. 128153, application no. 20131302741, filing date 22.01.2013, registration date 20.05.2013.
  7. Savinov O.A., Lavrinovich E.V. Teoriya i metody vibratsionnogo formovaniya zhelezobetonnykh izdeliy [Theory and Methods of Vibration-induced Molding of Reinforced Concrete Products]. Moscow, Stroyizdat Publ., 1988, 154 p.
  8. DSK «Blok» investiruet v novoe oborudovanie dlya proizvodstva perekrytiy i sten [“Block” Integrated House-building Factory Invests in New Floor and Wall Making Machinery]. Betonnyy zavod BFT Internation [BFT Internation Concrete Factory]. 2009, no. 3, pp. 52—55.
  9. Plouman J.M. The Influence of Variables in the Vibration of Concrete. Concrete Building and Concrete Products. 1953, vol. 28.
  10. Superplasticizers and Other Chemical Admixtures in Concrete. Proceedings of the Fifth Canmet, an ACI International Conference. Rome, Italy, 1997.


Results 1 - 1 of 1