Rational distribution of slab stiffness along the height of building with account for shear deformation
Pages 84-90
Currently, great attention is paid to the choice of optimal and rational design and construction solutions for individual structures and buildings in general. In the process of design not only constructive solution of an element is important, but also its location in the design scheme of the building. It is known that the correct consideration of the elements interaction in the design scheme contributes significantly to the rigidity and strength of multi-storey buildings.Slabs are involved in bending and shear and act like keys between the vertical elements. In order to reduce shear deformations and enhance overall stability of the building it is possible to increase the size of the keys, that means, to increase the height of a slab. In is necessary to determine the area that has the most significant impact on the rigidity and stability of the frame.For deciding that issue a computer model of 25-storey building was built. Settlement scheme was used to estimate the strength, deformability and stability of the frame.Basing on the models stability assessment it is suggested that the most efficient design solution is the floor slabs strengthening in the middle tier of the building by 0.4-0.5 heights of the building.
DOI: 10.22227/1997-0935.2013.11.84-90
- Sahab M.G., Ashour A.F., Toropov V.V. Cost Optimization of Reinforced Concrete Flat Slab Buildings. Engineering Structures. 2005, vol. 27, no. 3, pp. 313—322.
- Wust J., Wagner W. Systematic Prediction of Yield-Line Configurations for Arbitrary Polygonal Plates. Karlsruhe: Baustatik, 2007, 24 p.
- Malkov V.P., Kisilev V.G., Sergeev S.A. Optimizatsiya po masse prostranstvennykh ramnykh konstruktsiy s var'iruemymi tolshchinami poperechnykh secheniy s uchetom ogranicheniy po ustalostnoy dolgovechnosti [Optimization of Three Dimensional Frame Structures with the Variable Cross Section Thicknesses in Respect of their Mass Considering Restrictions of Fatigue Life]. Prikladnaya mekhanika i tekhnologiya mashinostroeniya: sbornik nauchnykh trudov [Applied Mechanics and Mechanical Engineering: Collection of Scientific Works]. Nizhniy Novgorod, 1997, pp. 77—97.
- Salamakhin P.M. Kontseptsiya avtomatizatsii proektirovaniya i optimizatsii konstruktsiy mostov [The Concept of Design Automation and Optimization of Bridge Construction]. Nauka i tekhnika v dorozhnoy otrasli [Science and Techniques in Road Sector]. 2005, no. 2(33), pp. 11—14.
- Serpik I.N., Mironenko I.V. Optimizatsiya zhelezobetonnykh ram s uchetom mnogovariantnosti nagruzheniya [Optimization of Reinforced Concrete Frames with Account for Multivariability of Loadings]. Stroitel'stvo i rekonstruktsiya [Construction and Reconstruction]. 2012, no. 1, pp. 33—39.
- Tamrazyan A.G., Filimonova E.A. Metod poiska rezerva nesushchey sposobnosti zhelezobetonnykh plit [Searching Method for Reserve of Load-bearing Capacity of Reinforced Concrete Slabs]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2011, no. 3, pp. 23—25.
- Klyueva N.V., Vetrova O.A. K otsenke zhivuchesti zhelezobetonnykh ramno-sterzhnevykh konstruktivnykh sistem pri vnezapnykh zaproektnykh vozdeystviyakh [Assesment of the Life of Reinforced Concrete Frame Construction Systems in Case of Unexpected Impacts beyond Design]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2006, no. 11, pp. 56—57.
- Kovalevich O.M. K voprosu o vybore optimal'nykh zatrat na upravlenie riskom pri chrezvychaynykh situatsiyakh [On the Problem of Choosing Economic Costs for Risk Managment in Case of Emergency Situations]. Problemy bezopasnosti pri chrezvychaynykh situatsiyakh [Security Issues in Emergency Situations]. 2001, no. 2, pp. 27—41.
- Gorodetskiy A.S., Evzerov I.D. Komp'yuternye modeli konstruktsiy [Computer Models of Structures]. Kiev, Fakt Publ., 2005, 344 p.
- Simbirkin V.N. Proektirovanie zhelezobetonnykh karkasov mnogoetazhnykh zdaniy s pomoshch'yu PK STAR ES [Designing Reinforced Concrete Frameworks for Multi-storey Buildings Using Software STAR ES]. Informatsionnyy vestnik Mosoblgosekspertizy [Informational Proceedings of Moscow Regional State Expertise]. 2005, no. 3(10), pp. 42—28.