-
Dement'eva Marina Evgen'evna -
Moscow State University of Civil Engineering (National Research University)
Candidate of Technical Sciences, Associate Professor, Associate Professor Department of Housing and Communal Services, Moscow State University of Civil Engineering (National Research University), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
-
Shaitanov Alexey Mikhailovich -
Moscow State University of Civil Engineering (National Research University)
Student, Department of Housing and Communal Services, Moscow State University of Civil Engineering (National Research University), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
Subject: studying the main directions for increasing durability and safety of unique, technically complex objects on the example of the Kayrakkum HPP. The peculiarity of operation of this kind of structures is the specificity of physical, chemical and mechanical factors that negatively affect their durability. However, complexity of the technical solution execution does not allow us to completely replace these structures after expiration of their standard service life. Taking into account the uniqueness of the HPP, the programs for the operational suitability restoration are individual. The main problems of reconstruction are considered, which consist in the necessity of, firstly, increasing the station’s productivity, and secondly, ensuring the stability of the dam to erosion and scours. Research objectives: the goal of the study was to develop proposals for improvement of operational suitability of the Kayrakkum HPP based on data on the technical condition of its main units, buildings, and rockfill dam. Materials and methods: in the process of long-term operation, due to filtration processes, seismic influences, the performance parameters of buildings and structures of hydropower plants deteriorate, which negatively affects the reliability of their operation. Therefore, based on the methods of mathematical statistics, data on the projected flood were analyzed. The data on the technical condition of the main HPP equipment were also analyzed and the main directions of its modernization were determined. Results: an assessment of the probability of destruction of the dam showed the need to strengthen it to reduce water filtration. A comparative analysis of possible options for reconstruction of the Kayrakkum HPP has shown the need for an integrated approach that will allow us to solve both the issues of ensuring safety requirements in accordance with international quality standards and enhancement of the plant’s capacity to increase the generation of electricity, the demand for which has increased over time. Out of four technological solutions to reduce filtration into the body of the dam, an option of the central diaphragm from the secant bored piles has been chosen as the least affecting the production cycle of the entire complex. Conclusions: the results of this work can be used when clarifying the repair work organization project to link the technological cycles in such a way as to reduce the losses in generation of electricity caused by execution of works on reconstruction.
DOI: 10.22227/1997-0935.2017.10.1098-1106
-
Zolina Tatyana Vladimirovna -
Astrakhan State University of Architecture and Civil Engineering (ASUACE)
Doctor of Technical Sciences, Vice-rector for Professional Education Development, Head of Construction and Economics College, Astrakhan State University of Architecture and Civil Engineering (ASUACE), 18 Tatishcheva st., Astrakhan, 414056, Russian Federation.
Research objective: assessment of the impact of crane loading on safe operation of building by using probabilistic methods; taking into account accumulation of damage in building’s structural elements occurring during operation period. Materials and methods: current computational schemes exploit procedures that do not take into consideration all external effects and changes in structures occurring during operation period of an industrial building. They do not provide algorithms for assessment of spatial response of building’s structures if probabilistic methods are used. Results: the experimental and theoretical research carried out by the author resulted in more precise definitions for computational models and for computational methods of analysis of industrial buildings under the action of various crane loads, including those that are not considered by regulatory documents. The suggested models and methods will enable us to design bearing structures of frameworks in accordance with their real operating conditions. The data obtained in a number of full-scale experiments lead to the conclusion that the amplitudes of vibrations caused by lateral forces when the overhead crane travels with a skew are significantly larger than the amplitudes observed during deceleration of the crane trolley. Conclusions: a hybrid algorithm has been developed; the suggested algorithm implements a complex of procedures for assessment of changes occurring in frame structures under different loading scenarios, during the service life of an industrial building.
DOI: 10.22227/1997-0935.2017.12.1352-1360
-
Marková Jana -
Klokner Institute, Czech Technical University (CTU), in Prague, 7 Šolínova, Prague 6, 166 08, Czech Republic
ssociated Professor; ORCID ID 0000-0002-9674-0718, Klokner Institute, Czech Technical University (CTU), in Prague, 7 Šolínova, Prague 6, 166 08, Czech Republic, 7 Šolínova, Prague 6, 166 08, Czech Republic.
-
Holický Milan -
Klokner Institute, Czech Technical University (CTU), in Prague, 7 Šolínova, Prague 6, 166 08, Czech Republic
Professor; ORCID ID 0000-0001-5325-6470, Klokner Institute, Czech Technical University (CTU), in Prague, 7 Šolínova, Prague 6, 166 08, Czech Republic, 7 Šolínova, Prague 6, 166 08, Czech Republic.
-
Sýkora Miroslav -
Klokner Institute, Czech Technical University (CTU), in Prague, 7 Šolínova, Prague 6, 166 08, Czech Republic
Associated Professor; ORCID ID 0000-0001-9346-3204., Klokner Institute, Czech Technical University (CTU), in Prague, 7 Šolínova, Prague 6, 166 08, Czech Republic, 7 Šolínova, Prague 6, 166 08, Czech Republic.
The present, globally-applicable revision of the fundamental EN 1990 Eurocode for the design of buildings and civil engineering structures is briefly summarised. General requirements are further elaborated with respect to structural resistance, serviceability and durability. In addition, provisions for robustness, sustainability and fire safety are included. An appropriate level of structural reliability should consider the consequences and possible causes of failure, public aversion and costs associated with reducing the risk of failure. However, the choice concerning the reliability level is left to national interpretation. The target reliability indexes are indicated for one-year and 50-year reference period, with no explicit link to the design working life being provided in the final draft of prEN 1990. It is proposed that the consequences of structural failure be organised into five categories; however, without providing recommendations on the target reliability indices for the lowest and highest consequence class. Supplementary guidance on structural robustness is proposed in prEN 1990, Annex E. A structure should have a sufficient level of robustness that it will not be damaged to an extent disproportional to the original cause. The working life design should be considered for time-dependent performance of the structures. Ultimate and serviceability limit states should be verified for all relevant design situations. Apart from the commonly-used partial factor method, which comprises a basic method for structural verification, additional guidance is also given for application of non-linear methods. The partial factors have been newly-calibrated with the aim of achieving a more balanced reliability level for structures from different materials and loading effects.
DOI: 10.22227/1997-0935.2018.9.1036-1042
-
Yang Hui -
Beijing University of Civil Engineering and Architecture
Ph.D, Associate Professor, Beijing University of Civil Engineering and Architecture, Zhanlanlu, 100044, Xicheng District, Beijing, P.R. China;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Lushin Kirill I. -
Moscow State University of Civil Engineering (National Research University) (MGSU)
, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
-
Plushenko Natalia Yu. -
Moscow State University of Civil Engineering (National Research University) (MGSU)
, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
Considers the modern building envelope construction with outside skin used as a sun shields. Such a constriction is often used for buildings with low energy consumption. A number of factors besides sun radiation influencing on the performance of facade system in general and every certain parts and elements throughout the entire period of building operation. Subject: multilayer and double skin building facades and sun screens located on their surfaces. Including, dual-use facades combining functions of the sun screen and sub construction for the placement of photovoltaic cells. Materials and methods: the main method was an estimation the aerodynamic and air-thermal characteristics of a double skin façade. Was considered a construction with combined function of a sun shield. The method was previously used in evaluation of the air-thermal regime of hinged facade systems of buildings for cold period of a year. The general approach was advanced and verified by the results of full-scale tests of building facades in the warm period of the year. Results: indicates great influence of air and thermal conditions of air gap in double skin and similar construction facades on performance of façade system in general and on every certain part of it. Conclusions: the construction of complex facade systems with the use of up to date technologies requires additional study of the air-thermal conditions of the air gap between the main facade of the building and its second skin or sun screen. Ignoring the operational features of active sun shields under extreme loads can lead to a decrease in the equipment functionality and its premature failure.
DOI: 10.22227/1997-0935.2018.9.1154-1164
-
Surikov Vitaliy Ivanovich -
Research Institute of Oil and Oil Products Transportation (NII TNN)
Deputy Director General for the Technology of Oil and Oil Products Transportation, Research Institute of Oil and Oil Products Transportation (NII TNN), 9-5, 2 Verhniy Mikhaylovskiy proezd, 115419, Moscow, Rus- sian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Bondarenko Valeriy Vyacheslavovich -
Limited Liability Company "Konar" ("Konar")
Candidate of Technical Sciences, director, Limited Liability Company "Konar" ("Konar"), 5 Hlebozavodskaya st, 454038, Chely- abinsk, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Korgin Andrey Valentinovich -
Moscow State University of Civil Engineering (MGSU)
Doctor of Technical Sciences, Professor, Supervisor, Scientific and Educational Center of Constructions Investigations and Examinations, Department of Test of Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-54-29;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Shonin Kirill Sergeevich -
Joint stock company “Konar” (JSC “Konar”)
head, Designing Department of the project “Metal Structures”, Joint stock company “Konar” (JSC “Konar”), 4b Prospect Lenina, 454085, Chelyabinsk; +7 (351) 222-33-00;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Mikheev Yuriy Borisovich -
Research Institute for Oil and Oil Products Transportation (NII TNN)
chief specialist, Department of Mechanical and Processing Equipment for the Pipeline Transportation Facilities, Research Institute for Oil and Oil Products Transportation (NII TNN), 47A Sevastopolskiy prospect, 117186, Moscow, Russian Federation; +7 (495) 950-82-95 (25-41);
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The present article deals with integrated research works and tests of pipeline supports for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe” which is laid in the eternally frozen grounds. In order to ensure the above-ground routing method for the oil pipeline “Zapolyarye - Pur-pe” and in view of the lack of construction experience in case of above-ground routing of oil pipelines, the leading research institute of JSC “Transneft” - LLC “NII TNN” over the period of August, 2011 - September, 2012 performed a research and development work on the subject “Development and production of pipeline supports and pile foundation test specimens for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe”. In the course of the works, the test specimens of fixed support, linear-sliding and free-sliding pipeline supports DN1000 and DN800 were produced and examined. For ensuring the stable structural reliability of the supports constructions and operational integrity of the pipelines the complex research works and tests were performed: 1. Cyclic tests of structural elements of the fixed support on the test bed of JSC “Diascan” by means of internal pressure and bending moment with the application of specially prepared equipment for defining the pipeline supports strength and durability. 2. Tests of the fixed support under the influence of limit operating loads and by means of internal pressure for confirming the support’s integrity. On the test bed there were simulated all the maximum loads on the support (vertical, longitudinal, side loadings, bending moment including subsidence of the neighboring sliding support) and, simultaneously, internal pressure of the carried medium. 3. Cyclic tests of endurance and stability of the displacements of sliding supports under the influence of limit operating loads for confirming their operation capacity. Relocation of the pipeline on the sliding supports from temperature expansion in case of preheated oil charge into a “cold” pipeline was simulated. 4. Cyclic tests of durability of frictional couples under the influence of operational and maximum loads. On the test bed there were examined various materials for the sliding surface of the supports, ensuring the norm friction coefficient.
DOI: 10.22227/1997-0935.2014.3.117-125
References
- Opory dlya truboprovodov na uchastkakh nadzemnoy prokladki truboprovodnoy sistemy «Zapolyar'e — NPS „Pur-Pe“»: Spetsial'nye tekhnicheskie trebovaniya [Supports for the Pipelines on the Areas of Above-ground Routing of the Pipeline System “Zapolyarye — Purpe”: Special Technical Requirements]. 2012, 92 p.
- Petrov I.P., Spiridonov V.V. Nadzemnaya prokladka truboprovodov [Above-ground Pipelining]. Moscow, Nedra Publ., 1973, 472 p.
- Kazakevich M.I., Lyubin A.E. Proektirovanie metallicheskikh konstruktsiy nadzemnykh promyshlennykh truboprovodov [Metal Structures Design for Above-ground Industrial Pipelines]. 2nd Edition. Kiev, Budivel'nik Publ., 1989, 160 p.
- McFadden T.T., Lawrense Bennett F. Construction in Cold Regions: A Guide for Planners, Engineers, Contractors, and Managers. Wiley Series of Practical Construction Guides. Wiley-Interscience, 1 edition, 1991, 640 p.
- Palmer A. Arctic Pipelines and the Future. Journal of Pipeline Engineering. 2011, vol. 10, no. 2.
- Coates P. Trans-Alaskan Pipeline Controversy: Technology, Conservation, and the Frontier. University of Alaska Press, 1 edition, 1993, 447 p.
- Cole D. Amazing Pipeline Stories: How Building the Trans-Alaska Pipeline Transformed Life in America's Last Frontier. Paperback, Epicenter Press, 1997, 224 p.
- Tiratsoo J. Trans Alaska Pipeline System. Pipelines International, ISSUE 004, 2010.
- Amerikanskaya tekhnika i promyshlennost': sbornik reklamnykh materialov [American Technologies and Industry: Collection of Advertizing Materials]. Moscow, V/O «Vneshtorgreklama» Publ, Chilton Ko, 1977, no. III, 407 p.
- Tipovye konstruktsii i detali zdaniy i sooruzheniy [Standard Constructions and Components of Buildings and Structures]. Seriya 4.903-10. Izdeliya i detali truboprovodov dlya teplovykh setey [Series 4.903-10. Items and Components of Pipelines for Heating Networks]. Vyp. 4. Opory truboprovodov nepodvizhnye [no.4. Fixed Pipeline Supports]. Leningrad, Leningradskiy filial proektno-tekhnologicheskogo instituta «Energomontazhproekt» Publ., 1972, 111 p.
- Unifi tsirovannaya dokumentatsiya na konstruktsii i uzly zdaniy i sooruzheniy [Unified Documentation for the Constructions and Node Points of Buildings and Structures]. Seriya 5.903-13. Izdeliya i detali truboprovodov dlya teplovykh setey [Series 5.903-13. Items and Components of Pipelines for Heating Networks]. Vyp. 8-95. Opory truboprovodov podvizhnye [no. 8-95. Pipeline Supports]. Rabochie chertezhi Publ., 2013, 199 p.
- Otchet po rezul'tatam poseshcheniya ob"ektov NK «Rosneft'» spetsialistami OAO «AK «Transneft'» [Report on the Visiting the Objects of the Oil Company “Rosneft” by the Specialists of JSCo «AK «Transneft'»]. 2011, p. 28.
- SP 16.13330.2011. Stal'nye konstruktsii [Rules and Regularities 16.13330.2011. Steel Structures]. 177 p.
- GOST 11629—75. Plastmassy. Metody opredeleniya koeffi tsienta treniya [All Union State Standard 11629—75. Methods of Friction Coefficient Determination]. 3 p.
- Surikov V.I., Varshitskiy V.M., Bondarenko V.V., Korgin A.V., Bogach A.A. Primenenie metoda konechnykh elementov pri raschete na prochnost' opor truboprovodov dlya uchastkov nadzemnoy prokladki nefteprovoda «Zapolyar'e — NPS “Pur-Pe”» [Using Finite Element Method in the Process of Strength Calculation for the Pipeline Supports in Above-Ground Area of "Zapolyar'e — NPS "Pur-Pe" Oil Pipeline]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 1, pp. 66—74.
-
Gustov Yuriy Ivanovich -
Moscow State University of Civil Engineering (MGSU)
Doctor of Technical Sciences, Professor, Department of Machinery, Machine Elements and Process Metallurgy, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-94-95;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Gustov Dmitriy Yur’evich -
Moscow State University of Civil Engineering (MGSU)
Candidate of Technical Sciences, Professor, Department of Building and Hoisting Machinery, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-53-83;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Voronina Irina Vladimirovna -
Moscow State University of Civil Engineering (MGSU)
Senior Lecturer, Department of Building and Hoisting Machinery, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 182-16-87;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
Criteria of plasticity and durability derivative of standard indicators of plasticity (δ, ψ) and durability (σ
0,2, σ
B) are offered. Criteria К
δψ and К
s follow from the equation of relative indicators of durability and plasticity. The purpose of the researches is the establishment of interrelation of derivative criteria with the Page indicator. The values of derivative criteria were defined for steels 50X and 50XH after processing by cold, and also for steels 50G2 and 38HGN after sorbitizing. It was established that the sum of the offered derivative criteria of plasticity and durability С
к considered for the steels is almost equal to unit and corresponds to a square root of relative durability and plasticity criterion C
0,5. Both criteria testify to two-unity opposite processes of deformation and resistance to deformation. By means of the equations for S
к and С it is possible to calculate an indicator of uniform plastic deformation of σ
р and through it to estimate synergetic criteria - true tension and specific energy of deformation and destruction of metal materials. On the basis of the received results the expressions for assessing the uniform and concentrated components of plastic deformation are established. The preference of the dependence of uniform relative lengthening from a cubic root of criterion К
δψ, and also to work of the criteria of relative lengthening and relative durability is given. The advantage of the formulas consists in simplicity and efficiency of calculation, in ensuring necessary accuracy of calculation of the size δ
р for the subsequent calculation of structural and power (synergetic) criteria of reliability of metals.
DOI: 10.22227/1997-0935.2014.9.39-47
References
- Gustov Yu.I., Allattuf Kh. Issledovanie vzaimosvyazi koeffitsientov plastichnosti i predela tekuchesti staley standartnykh kategoriy prochnosti [Study of Interdependence between Ductility Factors and Yield Limits for Steels of Standard Strength Grades]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 7, pp. 22—26.
- Gustov Yu.I., Gustov D.Yu. K razvitiyu nauchnykh osnov stroitel’nogo metallovedeniya [To Development of Scientific Fundamentals of Construction Metallurgical Science]. Doklady X rossiysko-pol’skogo seminara «Teoreticheskie osnovy stroitel’stva». Varshava [Reports of the 10th Russian-Polish Seminar "Theoretical Foundations of Construction"]. Warsaw, Moscow, ASV Publ., 2001, pp. 307—314.
- Ivanova V.S., Balankin A.S., Bunin I.Zh., Oksogoev A.A. Sinergetika i fraktaly v materialovedenii [Synergetrics and Fractals in Materials Science]. Moscow, Nauka Publ., 1994, 383 p.
- Skudnov V.A. Novye kompleksy razrusheniya sinergetiki dlya otsenki sostoyaniya splavov [New Synergetrics Collapse Complexes for an Assessment of Alloys Condition]. Metalovedenie i metallurgiya. Trudy NGTU imeni R.E. Alekseeva [Metal Science and Metallurgy. Works of Nizhny Novgorod State Technical University n.a. R.E. Alekseev]. N. Novgorod, 2003, vol. 38, pp. 155—159.
- Gustov Yu.I., Gustov D.Yu., Voronina I.V. Sinergeticheskie kriterii metallicheskikh materialov [Synergetic Criteria of Metal Materials]. Sbornik dokladov XV Rossiysko-slovatsko-pol’skogo seminara «Teoreticheskie osnovy stroitel›stva». Varshava [Reports of the 15th Russian-Polish Seminar "Theoretical Foundations of Construction"]. Warsaw, Moscow, MGSU Publ., 2006, pp. 179—184.
- Il’in L.N. Osnovy ucheniya o plasticheskoy deformatsii [Doctrine Bases on Plastic Deformation]. Moscow, Mashinostroenie Publ.,1980, 150 p.
- Fridman Ya.B. Mekhanicheskie svoystva metallov. Ch. 2 Mekhanicheskie ispytaniya. Konstruktsionnaya prochnost’ [Mechanical Properties of Metals. Part 2. Mechanical Tests. Constructional Strength]. Moscow, Mashinostroenie Publ., 1974, 368 p.
- Goritskiy V.M., Terent’ev V.F. Struktura i ustalostnoe razrushenie metallov [Structure and Fatigue Failure of Metals]. Moscow, Metallurgiya Publ., 1980, 208 p.
- Arzamasov B.N., Solov’eva T.V., Gerasimov S.A., Mukhin G.G., Khovava O.M. Spravochnik po konstruktsionnym materialam [Reference Book on Construction Materials]. Moscow, Izd-vo MGTU im. N.E. Baumana Publ., 2005, 640 p.
- Larsen B. Formality of Sheet Metal. Sheck Metal Ind. 1977, vol. 54, no. 10, pp. 971—977.
- Abramov V.V., Djagouri L.V., Rakunov Yu.P. Kinetics and Mechanism of Contact Interaction with the Deformation and Thermal Deformation Effects on Crystalline Inorganic Materials. Materials of the 1st International Scientific Conference "Global Science and Innovation" (Chicago, USA, December 17—18th, 2013). Chicago, USA, 2013, vol. 2, pp. 360—371.
- Abramov V.V., Djagouri L.V., Rakunov Yu.P. Growth Kinetics of Strength (Setting) between Dissimilar Crystalline Materials with Dramatically Different Resistances to Plastic Deformation and Natures of Chemical Bonds. Materials of the 1st International Scientific Ñonference «Global Science and Innovation» (Chicago, USA, December 17—18th, 2013). Chicago, USA, 2013, vol. 2, pp. 372—380.
- Callister W.D., Rethwisch D.G. Fundamentals of Materials Science and Engineering. An Integrated Approach. John Wiley Sons, Ins., 2008, 896 p.
- Sansalone M., Jaeger B. Applications of the Impact-Echo Method for Detecting Flaws in Highway Bridges. Structural Materials Technology. An NTD Conference, San Diego, California, 1996, pp. 204—210.
- Tylkin M.A. Prochnost’ i iznosostoykost’ detaley metallurgicheskogo oborudovaniya [Strength and Wear Resistance of Details of the Metallurgical Equipment]. Moscow, Metallurgiya Publ., 1965, 347 p.
-
Yu Qing Liang -
Eindhoven University of Technology
PhD, Assistant Professor, Department of the Built Environment, Eindhoven University of Technology, Den Dolech 2, 5612 Az Eindhoven, the Netherlands; +31 40-247 2371;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Spiesz Przemek -
Eindhoven University of Technology
PhD, University Teacher, Department of the Built Environment, Eindhoven University of Technology, Den Dolech 2, 5612 Az Eindhoven, the Netherlands; +31 40-247 5904;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Brouwers Jos -
Eindhoven University of Technology
PhD, Professor, Department of the Built Environment, Eindhoven University of Technology, Den Dolech 2, 5612 Az Eindhoven, the Netherlands; +31 40-247 2930;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K); and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm
2. This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.
DOI: 10.22227/1997-0935.2014.4.98-106
References
- Chandra Berntsson L. Lightweight Aggregate Concrete Science, Technology and Applications. Standard publishers distributors. Delhi, India, 2003.
- Yu Q.L. Design of Environmentally Friendly Calcium Sulfate-based Building Materials. Towards and Improved Indoor Air Quality. PhD thesis. Eindhoven University of Technology, the Netherlands 2012.
- Brouwers H.J.H., Radix H.J. Self-compacting Concrete: Theoretical and Experimental Study. Cement Concrete Research. 2005, no. 35, pp. 2116—2136.
- Hunger M. An Integral Design Concept for Ecological Self-Compacting Concrete. PhD thesis. Eindhoven University of Technology, the Netherlands, 2010.
- H?sken G., Brouwers H.J.H. A New Mix Design Concept for Earth-moist Concrete: A Theoretical and Experimental Study. Cement and Concrete Research, 2008, no. 38, pp. 1246—1259.
- H?sken G. A Multifunctional Design Approach for Sustainable Concrete with Application to Concrete Mass Products. PhD thesis. Eindhoven University of Technology, the Netherlands, 2010.
- Zareef M.A.M.E. Conceptual and Structural Design of Buildings made of Lightweight and Infra-Lightweight Concrete, 2010.
- ACI Committee 213. Guide for Structural Lightweight-Aggregate Concrete. 2003.
- Loudon A.G. The Thermal Properties of Lightweight Concretes. International Journal of Cement Composites and Lightweight Concrete. 1979, no. 1, pp. 71—85.
- Neville A.M. Properties of Concrete. 4th ed. 1995.
- Alduaij J., Alshaleh K., Naseer Haque M., Ellaithy K. Lightweight Concrete in Hot Coastal Areas. Cement and Concrete Composites. 1999, no. 21, pp. 453—458.
- Top?u I.B., Uygunoglu T. Effect of Aggregate Type on Properties of Hardened Selfconsolidating Lightweight Concrete (SCLC). Construction and Building Materials, 2010, no. 24, pp. 1286—1295.
- Schauerte M., Trettin R. Neue Schaumbetone mit gesteigerten mechanischen ind physikalischen Eigenschaften. Bauhaus-Universitat Weimar. Weimar, Germany, 2012, pp. 2-0066—2-0072.
- Kan A., Demirboga R. A Novel Material for Lightweight Concrete Production, Cement and Concrete Composites. 2009, no. 31, pp. 489—495.
- Kralj D. Experimental Study of Recycling Lightweight Concrete with Aggregates Containing Expanded Glass. Process Safety and Environmental Protection. 2009, no. 87, pp. 267—273.
- Liu X., Chia K.S., Zhang M.H. Development of Lightweight Concrete with High Resistance to Water and Chlorideion Penetration. Cement and Concrete Composites. 2010, no. 32, pp. 757—766.
- Yu Q.L., Spiesz P., Brouwers H.J.H. Design of Ultra-lightweight Concrete: Towards Monolithic Concrete Structures. 1st International Conference on the Chemistry of Construction Materials, Berlin, 7-9 October 2013, Monograph. 2013, vol. 46, pp. 31—34. Available at: http://josbrouwers.bwk.tue.nl/publications/Conference108.pdf.
-
Inozemtsev Sergey Sergeevich -
Moscow State University of Civil Engineering (MGSU)
Candidate of Technical Sciences, test engineer, Research and Educational Center on "Nanotechnology", Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7-499-188-04-00;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Korolev Evgeniy Valer’evich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, Professor, Advisor of RAACS, Director, Research and Educational Center “Nanomaterials and Nanotechnologies”, Prorector, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
In order to prolong the lifetime and to improve the quality of pavements made of asphalt concrete it is necessary to apply innovative solutions in the process of design of such building materials. In order to solve the problem of low durability of asphalt concrete a modifier was proposed, which consists of diatomite, iron hydroxide sol (III) and silica sol. Application of the diatomite with nanoscale layer of nanomodifier allows getting a stone mastic asphalt, which has high values of physical and mechanical properties and allows refusing from expensive stabilizing additive. Mineral filler was replaced by diatomite, which has been modified by iron hydroxide sol (III) and silica sol. Modified diatomite allows sorption of bitumen and increase the cohesive strength and resistance to shear at positive temperatures. The modified asphalt has higher resistance to rutting at high temperature, abrasion resistance at low temperature and impact of climatic factors: alternate freezing and thawing, wetting-drying, UV and IR radiations. It is achieved by formation of solid and dense bitumen film at the phase interface and controlling the content of light fractions of the bitumen. The modifier consists of sol of iron hydroxide, which blocks the oxidation and polymerization of bitumen during operation. The proposed material allows controlling the initial structure formation of stone mastic asphalt. It was shown that modern test methods allow assessing the durability of asphalt in the design phase compositions.
DOI: 10.22227/1997-0935.2015.3.29-39
References
- Prokhorov A.M. Bol’shoy entsiklopedicheskiy slovar’ [Great Encyclopedic Dictionary]. 2nd edition, revised and enlarged. Moscow, Saint Petersburg, Bol’shaya Ros. entsikl. Publ., 1997. 1456 p. (In Russian)
- Danilov A.M., Korolev E.V., Gar’kina I.A. Stroitel’nye materialy kak sistemy [Building Materials as Systems]. Stroitel’nye materialy [Construction Materials]. 2006, no. 7, pp. 55—57. (In Russian)
- Gezentsvey L.B. Asfal’tovyy beton iz aktivirovannykh mineral’nykh materialov [Asphalt Concrete Made of Activated Mineral Materials]. Moscow, Stroyizdat Publ., 1971, 255 p. (In Russian)
- Gridchin A.M., Yadika V.V., Kuznetsov D.A., Vysotskaya M.A., Kuznetsov A.V. Osobennosti svoystv poverkhnosti kislykh mineral’nykh materialov dlya asfal’tobetonnykh smesey [Features of the Properties of Acidic Mineral Materials’ Surface for Asphalt]. Stroitel’nye materialy [Construction Materials]. 2007, no. 8, pp. 56—57. (In Russian)
- Inozemtsev S.S., Grishina A.N., Korolev E.V. Model’ kompleksnogo nanorazmernogo modifikatora dlya asfal’tobetonov [Model of Complex Nanoscale Modifier for Asphalt Concrete]. Regional’naya arkhitektura i stroitel’stvo [Regional Architecture and Engineering]. 2013, no. 3, pp. 15—21. (In Russian)
- Inozemtsev S.S., Korolev E.V. Mineral Carriers for Nanoscale Additives in Bituminous Concrete. Advanced Materials Research. 2014, vol. 1040, pp. 80—86. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.1040.80.
- Korolev E.V., Grishina A.N. Sintez i issledovanie nanorazmernoy dobavki dlya povysheniya ustoychivosti pen na sinteticheskikh penoobrazovatelyakh dlya penobetonov [Synthesis and Study of Nanoscale Additive to Enhance the Foams Stability with Synthetic Blowing Agents for Foam Concrete]. Stroitel’nye materialy [Construction Materials]. 2013, no. 2, pp. 30—33. (In Russian)
- Cong P., Chen S., Chen H. Effects of Diatomite on the Properties of Asphalt Binder. Construction and Building Materials. 2012, vol. 30, pp. 495—499. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2011.11.011.
- Zhu D.-P., Zhang J.-Z., Chen J.-B., Yuank K., Cheng C. Experiment on Road Performance of Diatomite Modified Asphalt Mixture in Permafrost Regions. Zhongguo Gonglu Xuebao/China Journal of Highway and Transport. 2013, vol. 26, no. 4, pp. 23—28.
- Tan Y.-Q., Zhang L., Zhang X.-Y. Investigation of Low-Temperature Properties of Diatomite-Modified Asphalt Mixtures. Construction and Building Materials. 2012, vol. 36, pp. 787—795.
- Zhang Y., Zhu H., Wang G., Chen T. Evaluation of Low Temperature Performance for Diatomite Modified Asphalt Mixture. Advanced Materials Research. 2012, vol. 413, pp. 246—251. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.413.246.
- Iliopolov S.K., Mardirosova I.V. Effektivnyy modifikator-stabilizator dlya shchebenochno-mastichnykh smesey [Effective Modifier Stabilizer for Stone Mastic Mixtures]. Avtomobil’nye dorogi [Automobile Roads]. 2006, no. 7, pp. 19—22. (In Russian)
- Gar’kina I.A., Danilov A.M., Korolev E.V. Model’ destruktsii kompozitsionnykh materialov [Destruction Model of Composites]. Obozrenie prikladnoy i promyshlennoy matematiki [Review of Applied and Industrial Mathematics]. 2008, vol. 15, no. 3, pp. 459—460. (In Russian)
- Gridchin A.M., Dukhovnyy G.S., Kotukhov A.N., Pogromskiy A.N. Otsenka vozdeystviya klimaticheskikh faktorov na asfal’tobeton [Assessing the Impact of Climatic Factors on Asphalt Concrete]. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. Shukhova [Bulletin BSTU named after V.G. Shukhov]. 2003, no. 5, pp. 262—264. (In Russian)
- Pechenyy B.G. Dolgovechnost’ bitumnykh i bitumomineral’nykh pokrytiy [Durability of Bituminous and Bituminous-Mineral Coatings]. Moscow, Stroyizdat Publ., 1981, 123 p. (In Russian)
- Kotlyarskiy E.V., Voeyko O.A. Dolgovechnost’ dorozhnykh asfal’tobetonnykh pokrytiy i faktory, sposobstvuyushchie razrusheniyu struktury asfal’tobetona v protsesse ekspluatatsii [Durability of Asphalt Concrete Pavement and Destruction Factors of Asphalt Concrete Structure during the Operation]. Moscow, Tekhpoligraftsentr Publ., 2007, 136 p. (In Russian)
- Zolotarev V.A. Vremya kak kriteriy otsenki dolgovechnosti asfal’tovykh materialov [Time as Criterion for Assessing the Durability of Asphalt Materials]. Nauka i tekhnika v dorozhnoy otrasli [Science and Technology in the Road Sector]. 2013, no. 1 (64), pp. 10—13. (In Russian)
- Vysotskaya M.A., Kuznetsov D.K., Barabash D.E. Osobennosti strukturoobrazovaniya bitumno-mineral’nykh kompozitsiy s primeneniem poristogo syr’ya [Features of Structure Formation of Bitumen-Mineral Compositions with the Use of Porous Materials]. Stroitel’nye materialy [Construction Materials]. 2014, no. 1—2, pp. 68—71. (In Russian)
- Sokolov B.F., Maslov S.M. Modelirovanie ekspluatatsionno-klimaticheskikh vozdeystviy na asfal’tobeton [Modeling of Operational And Climate Impacts On Asphalt]. Voronezh, VGU Publ., 1987, 104 p. (In Russian)
- Bazhenov Yu.M., Danilov A.M., Gar’kina I.A., Korolev E.V. Sistemnyy analiz v stroitel’nom materialovedenii [System Analysis in Construction Materials Science]. Moscow, MGSU Publ., 2012, 432 p. (In Russian)
-
Koroleva Elena Leonidovna -
Bryansk State Academy of Engineering Technology (BSAET)
Candidate of Technical Sciences, Associate Professor, Department of Production of Building Structures, Bryansk State Academy of Engineering Technology (BSAET), 3 prospekt St. Dimitrova, 241037, Bryansk, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Matveeva Elena Gennad’evna -
Bryansk State Academy of Engineering Technology (BSAET)
Candidate of Technical Sciences, assistant lecturer, Department of Production of Building Structures, Bryansk State Academy of Engineering Technology (BSAET), 3 prospekt St. Dimitrova, 241037, Bryansk, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Naumenko Ol’ga Viktorovna -
Bryansk State Academy of Engineering Technology (BSAET)
student, Bryansk State Academy of Engineering Technology (BSAET), 3 prospekt St. Dimitrova, 241037, Bryansk, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Nyrikova Tat’yana Nikolaevna -
Bryansk State Academy of Engineering Technology (BSAET)
student, Bryansk State Academy of Engineering Technology (BSAET), 3 prospekt St. Dimitrova, 241037, Bryansk, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The objective of the research project was to design multi-component concrete with an optimized pore structure designated for sewage water treatment facilities. It was followed by the study of their stability in aggressive environments. Measurement of mesopores and macropores with diameters of 0.0055 to 360 mcm was taken using AutoPore IV 9500 porosimeter. X-ray analysis of samples was performed using diffractometer ARL X’TRA produced by Thermo Scientific (Switzerland). Modified 28-day concrete cubes were exposed to aggressive environments for 1 year at low (+4 ± 2 °C) and high temperatures (+20 ± 2 °C) to identify their linear deformation characteristics. Compressive strength of samples was tested upon completion of each three-month period.The authors have found out that degradation of concrete samples in the corrosive environment of waste waters accompanied by generation of thaumasite is less intensive than that in the waste waters that have ettringite generated. Thus, the authors have discovered that the lower the temperature of the aggressive environment of the waste water, the more intensive the formation of ettringite that causes destruction of the concrete. Optimization of the concrete structure is attained through the optimization of the concrete composition. Application of fine-grained silica causes generation of concrete that is highly resistant to the aggressive effects of sulfates and chlorides.
DOI: 10.22227/1997-0935.2013.2.101-107
References
- Moskvin V.M., Ivanov F.M., Alekseev S.N., Guzeev E.A. Korroziya betona i zhelezobetona, metody ikh zashchity [Corrosion of Concrete and Reinforced Concrete; Methods of Their Protection]. Moscow, Stroyizdat Publ., 1980.
- Clark L. Thaumasite Form of Sulfate Attack. Concrete International. Vol. 22, no. 2, February 1999, pp. 37—40.
- Zhukov Yu. A. Vliyanie gidrookisi kal’tsiya na razvitie destruktivnykh protsessov v betone pri shchelochnoy korrozii [Influence of Calcium Hydroxide onto Development of Degenerative Processes in the Concrete Exposed to Alkaline Corrosion]. Leningrad, LIIZhT Publ., 1972, 19 p.
- Stark J. Alkali-Kiesels?ure-Reaktion. F.A. Finqer Institute f?r Baustoffkunde, 2008, 139 p.
- Stanton T. E. Expansion of Concrete through Reaction between Cement and Aggregate. Proc., Amer. Soc. Civ. Eng., 1940, pp. 1781—1811.
- Collepardi M. Damage by Delayed Ettringite Formation — a Holistic Approach and New Hypothesis. Concrete International. Vol. 21, no. 1, January 1999, pp. 69—74.
- Shtark Y., Bol’mann K., Zayfart K. Yavlyaetsya li ettringit prichinoy razrusheniya betona? [Is Ettringrite the Reason for Concrete Destruction?] Tsement i ego primenenie [Cement and Its Application]. 1998, no. 2, pp. 13—22.
- Bazanov S.M. Mekhanizm razrusheniya betona pri vozdeystvii sul’fatov [Pattern of Concrete Destruction in the Event of Exposure to Sulfates]. Stroitel’nye materialy [Construction Materials]. 2004, no. 9, pp. 46—48.
- Stanton T.E. Influence of Cement and Aggregate on Concrete Expansion. Engineering News Record, Feb., no. 1, 1940.
- Midness S., Young J.F., Darwin D. Concrete. Prentice Hall, Upper Saddle River, NJ, 2002, pp. 142—154.
-
Lyapidevskaya Ol’ga Borisovna -
Moscow State University of Civil Engineering (MGSU)
Candidate of Technical Sciences, Associate Professor, Professor, Department of Building Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Bezuglova Ekaterina Aleksandrovna -
Moscow State University of Civil Engineering (MGSU)
postgraduate student, Department of Building Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The authors consider the problems of influence of corrosive water media onto underground buildings and structures and various methods of their waterproofing. The market overview of up-to-date waterproofing compounds is provided in the article. The authors set forth their research findings identified at Moscow State University of Civil Engineering recently. A new mineral-based waterproofing coating material is presented. The authors deal with the issue of chemical interaction within the system of cement - microsilica - soda-silica glass and the issue of optimization of particle packing aimed at the assurance of superior protective and durability-related properties of the composition. The main process strengths of the new coating material are enlisted.The authors introduce the results of comparative tests of basic hydro-physical and mechanical (compressive strength, adhesive strength) properties of the new material and its analogues currently applied in the construction industry with a view to the assessment of the protective ability and the economic effectiveness of the new waterproofing material.
DOI: 10.22227/1997-0935.2013.2.108-113
References
- Shilin A.A. Remont zhelezobetonnykh konstruktsiy [Repair of Reinforced Concrete Structures]. Moscow, Gornaya kniga publ., 2010, 519 p.
- Kozlov V.V., Chumachenko A.A. Gidroizolyatsiya v sovremennom stroitel’stve [Waterproofing in the Present-day Construction Industry]. Moscow, ASV Publ., 2003, 118 p.
- Shilin A.A., Zaytsev M.V., Zolotarev I.A., Lyapidevskaya O.B. Gidroizolyatsiya podzemnykh i zaglublennykh sooruzheniy pri stroitel’stve i remonte [Waterproofing of Underground and Embedded Structured in the Course of Their Construction and Repair]. Kiev, Optima Publ., 2005, 396 p.
- Falikman V.R. New High Performance Polycarboxilate Superplasticizers Based on Derivative Copolymers of Maleinic Acid. 6th International Congress “GLOBAL CONSTRUCTION” Advances in Admixture Technology. Dundee, 2005, pp. 41—46.
- Batrakov V.G. Modifitsirovannye betony [Modified Concretes]. Moscow, Astra sem’ publ., 1998, 697 p.
- Fennis S.A.A.M., Walraven J.C. Design of Ecological Concrete by Particle Packing Optimization. Delft University of Technology, 2010, pp. 115—144.
-
Zhukov Aleksey Dmitrievich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, Associate Professor, Department of Composite Materials Technology and Applied Chemistry, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Smirnova Tat’yana Viktorovna -
Moscow State University of Civil Engineering (MGSU)
postgraduate student, Department of Technology of Finishing and Insulation Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
-
Chugunkov Aleksandr Viktorovich -
Moscow State University of Civil Engineering (MGSU)
postgraduate student, Department of Technolo- gy of Finishing and Insulation Materials, Director, Department of Inspection of Buildings, Com- prehensive Research Laboratory of Geotechnical Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
-
Khimich Anastasiya Olegovna -
Moscow State University of Civil Engineering (MGSU)
student, Institute of Construction and Architecture, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
Effectiveness of thermal insulation products is determined by a set of criteria that can be expressed in terms of energy costs: reduction of the cost of heating (the main criterion), energy consumption in the course of construction, energy consumption in the course of production of materials having pre-set properties, and service durability of the material.On the one hand, service durability (as a property) is generated in the course of material production, and on the other hand, it depends on the conditions that the material is exposed to in the course of any construction process. The same parameter affects energy-related criteria. Insulation replacement or unplanned repairs add supplementary energy costs.The manufacturing process of thermal insulation materials contemplates processing of a significant amount of non-renewable natural resources, namely, fuel combustion. Optimization of these costs is necessary and possible through appropriate organization of processes, including the process of heat treatment of products.Layered materials can improve the product performance and durability. Production and heat treatment of mineral fibers are the most energy-consuming steps of the mineral wool production. Optimization of these processes can involve significant economic effects.
DOI: 10.22227/1997-0935.2013.5.97-102
References
- Gagarin V.G. Teplozashchita i energeticheskaya effektivnost’ v proekte aktualizirovannoy redaktsii SNIP «Teplovaya zashchita zdaniy» [Thermal Protection and Energy Efficiency in Draft Revised Version of Construction Norms and Rules “Thermal Protection of Buildings”]. Energoeffektivnost’ XXI vek: III Mezhdunarodnyy kongress. [3d International Congress. Energy Efficiency 21st Century]. St.Petersburg, 2011, pp. 34—39.
- Khlevchuk V.R., Bessonov I.V. O raschetnykh teplofizicheskikh pokazatelyakh mineralovatnykh plit. Problemy stroitel’noy teplofiziki, sistem mikroklimata i energosberezheniya v zdaniyakh [Analytical Thermophysical Parameters of Mineral Wool Panels. Problems of Thermal Physics, Climate Systems and Energy Efficiency in Buildings]. Moscow, NIISF Publ., 1998, pp. 127—135.
- Zhukov A.D. Tekhnologiya teploizolyatsionnykh materialov [Technology of Thermal Insulation Materials]. Moscow, MGSU Publ., 2011, Part 1 — 395 p., Part 2 — 195 p.
- Bli?d?ius R., Samajauskas R. The Peculiarities of Determining Thermal Conductivity Coefficient of Low Density Fibrous Materials. Materials Science. MED?IAGOTYRA, 2001, 345 p.
- Lienhard J.H. IV, Lienhard J.H. V. A Heat Transfer Text Book. Cambridge, MA, Phlogiston Press, 2003, 749 p.
- Zhukov A.D. Smirnova T.V. Gidrodinamika potoka teplonositelya v mineralovatnom kovre [Hydrodynamics of Heat Transfer Agent Flow inside Mineral Wool Mats]. Nauka. Stroitel’stvo. Obrazovanie. [Science. Construction. Education.] 2012, no. 1. Available at: http://www.nso-journal.ru.
- Zhukov A.D., Chugunkov A.V., Gudkov P.K. Modelirovanie i optimizatsiya tekhnologii gazobetona [Modeling and Optimization of the Aeroconcrete Technology]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 4, pp. 155—159.
- Zhukov A.D., Smirnova T.V., Khimich A.O., Eremenko A.O., Kopylov N.A. Raschet parametrov teplovoy obrabotki mineralovatnykh izdeliy s primeneniem EVM [Computer-based Analysis of Thermal Treatment Parameters Applicable to Mineral Wool Products]. Stroitel`stvo: nauka i obrazovanie [Construction: Science and Education]. 2013, no. 1. Available at: http://www.nso-journal.ru.
- Kurochkin V.A., Zhukov D.V., Shelepov E.P. Modelirovanie promyshlennogo rezhima konvektivnoy sushki izdeliy v protsesse eksperimenta [Modeling of Industrial Mode of Convective Drying of Products in the Course of an Experiment]. Stroitel’nye materialy [Construction Materials]. 1979, no. 1, pp. 27—32.
- Okorokov A.M., Zhukov D.V. Issledovanie i raschet protsessa teplovoy obrabotki mineralovatnogo kovra metodom produvki teplonositelya [Research into and Analysis of Mineral Wool Heat Treatment by Blowing the Heat Transfer Agent]. Stroitel’nye materialy [Construction Materials]. 1982, no. 7, pp. 32—37.
- Petrov-Denisov V.G., Maslennikov L.A. Protsessy teplo- i vlagoobmena v promyshlennoy teploizolyatsii [Heat and Moisture Transfer in Industrial Insulation]. Moscow, Energoizdat Publ., 1983, 192 p.
-
Aleksashin Sergey Vladimirovich -
Moscow State University of Civil Engineering (MGSU)
postgraduate student, Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Bulgakov Boris Igorevich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, Associate Professor, Department of the Technology of Binders and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
This article covers the design of an advanced multi-component additive and the study of its influence produced on the properties of fine-grained concrete. The authors also provide data on the earlier studies of the effect produced by domestic superplasticizers on the plasticity of fine-grained concrete mixtures and the curing behaviour of plasticized fine concretes. Russian-made superplasticizer Khimkom F1 was used to retain the plasticity of the fine concrete under consideration. Khimkom F1 produces a better effect on concrete curing than Polyplast SP-1, Cemactive SU-1, and Linomix SP 180-2. Superplasticizer Khimkom F1, as opposed to plasticizers based on lingo-sulfonate or naphthalene, for example S-3, has no bad odour; it is non-corrosive if applied to steel reinforcement inside concrete. The research has proved that the optimal amount of Khimkom F1 is 1.2% of the total amount of the binder.Metakaolin fume was used to improve the microstructure of the concrete, including its strength, waterand frost-resistance. Improvement of the above properties was proved in the course of the experiment. Its optimal content equals to 15% of the total amount of the binder. The study of the two domestically made water repellents (Sofexil40 and Sofexil 60-80) was conducted to identify and to compare their water and frost resistance. Experimental findings have proven that Sofexil 40 produces higher influence on the properties of the fine concrete, used for hydraulic engineering purposes, than Sofexil 60-80. The optimal content of the water repellent is 0.2% of the binder content. Sofexil 40 must be dissolved in the water in advance. Finally, the authors provide their experimental findings in terms of the optimal composition of the fine hydraulic concrete having pre-set properties.
DOI: 10.22227/1997-0935.2013.8.97-103
References
- Aleksashin S.V., Bulgakov B.I. Poluchenie melkozernistykh betonov s vysokimi ekspluatatsionnymi pokazatelyami [Production of Fine-grained High Performance Concrete]. Sbornik nauchnykh trudov Instituta stroitel'stva i arkhitektury [Collection of Research Papers of the Institute of Construction and Architecture]. Moscow, KYuG Publ., 2012, pp. 12—13.
- Lukuttsova N.P., Pykin A.A., Chudakova O.A. Modifitsirovanie melkozernistogo betona mikro- i nanorazmernymi chastitsami shungita i dioksida titana [Modification of Fine-grained Concrete by Micro Particles of Schungite and Titanium Dioxide]. Vestnik BGTU im. V.G. Shukhova [News Bulletin of Belgorod Shukhov State Technical University]. 2010, no. 2, pp. 67—70
- Falikman V.R. New High Performance Polycarboxilate Superplasticizers Based on Derivative Copolymers of Maleinic Acid. 6th International Congress “GLOBAL CONSTRUCTION” Advances in Admixture Technology. Dundee, 2005, pp. 41—46.
- Lukuttsova N.P. Nanomodifitsiruyushchie dobavki v beton [Nano-modifying Additives for Concrete]. Stroitel'nye materialy [Construction Materials]. 2010, no. 9, pp. 101—104.
- Bazhenov Yu.M., Lukuttsova N.P., Matveeva E.G. Issledovanie nanomodifitsirovannogo melkozernistogo betona [Research into Nano-modified Fine Concrete]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, vol. 2, no. 4, pp. 415—418.
- Shah S.P., Ahmad S.H. High Performance Concrete: Properties and Applications. McGraw-Hill, Inc., 1994, 403 p.
- Ramachandran V.S. Dobavki v beton: spravochnoe posobie [Additives for Concrete: Reference Book]. Moscow, Stroyizdat Publ., 1988, 291 p.
- Commission 42-CEA. Properties Set Concrete at Early Ages. State-of-the-art-report. Materiaux et Constructions. 1981, vol. 14, no. 4, p. 15.
- Fennis S.A.A.M., Walraven J.C. Design of Ecological Concrete by Particle Packing Optimization. Delft, Delft University of Technology, 2010, pp. 115—144.
- Batrakov V.G. Modifitsirovannye betony. Teoriya i praktika [Modified Concretes. Theory and Practice.] Moscow, Tehnoproekt Publ., 1998, 560 p.
-
Suraeva Ekaterina Nikolaevna -
Ogarev Mordovia State University (Ogarev MSU)
external degree-seeking student, Department of Construction Materials and Technologies, Ogarev Mordovia State University (Ogarev MSU), 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russian Federation; +7 (8342) 47-40-19;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Erofeev Vladimir Trofimovich -
Ogarev Mordovia State University (MGU im. Ogareva)
Doctor of Technical Sciences, Professor, Chair, Department of Construction Materials and Technologies, dean, Department of Architecture and Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Korolev Evgeniy Valer'evich -
Moscow State University of Civil Engineering (MGSU)
Doctor of Technical Sciences, Professor, Adviser, Russian Academy of Architectural and Building Sciences (RAACS), director, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7-499-188-04-00;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
Dry construction mixes are today a product of high technologies. Depending on the purpose and requirements to the properties it is easy to produce dry construction mixes with different compositions and operating indicators in plant conditions using the necessary modifying additives. Cement, gypsum and other mineral binders are used in the construction mixes. Different types of cement are more heavily used in dry construction mixes. Such dry mixes are believed to be more effective materials comparing to traditional cement-sandy solutions of centralized preparation. The authors present the results of the investigations on obtaining biocidal cement-sand compositions. It was established, that introduction of sodium sulfate into the composition provides obtaining the materials with funginert and fungicide properties. The strength properties of the mixes modified by carbon nanotubes and biocide additive were investigated by mathematical planning methods. The results of the investigations showed that the modification of cement stone structure by carbon nanotubes positively influences their strength and technological properties. Nanomodifying of construction composites by introducing carbon nanotubes may be effectively used at different stages of structure formation of a construction material.
DOI: 10.22227/1997-0935.2015.4.104-114
References
- Kalashnikov V.I., Erofeev V.T., Moroz M.N., Troyanov I.Yu., Volodin V.M., Suzdal'tsev O.V. Nanogidrosilikatnye tekhnologii v proizvodstve betonov [Nanohydrosilicate Technologies in Producing Concretes]. Stroitel'nye materialy [Construction Materials]. 2014, no. 5, pp. 88—91. (In Russian)
- Meshcherin V., Katts M. Dobavki i dopolnitel'nye komponenty v sovremennoy tekhnologii proizvodstva [Additives and Additional Components in the Modern Production Technology]. CPI — Mezhdunarodnoe betonnoe proizvodstvo [CPI — International Concrete Production]. 2008, no. 6, pp. 42—48. (In Russian)
- Borman R., Fenling E. Ultrahochfester Beton-Entwicklung und Verhalten. Leipziger Massivbauseminar. 2000, Bd. 1, S. 1083—1091.
- Kleingelhöfer P. Neue Betonverflissiger auf Basis Policarboxilat. Proc. 13. Jbasil Weimar. 1997, Bd. 1, S. 491—495.
- Dallaire E., Bonnean O., Lachemi M., Aitsin P. Mechanical Behavior of Confined Reactive Powder Concrete. American Society of Civil Engineers, Materials of the Engineering Conference. Washington DC, November 1996, vol. 1, pp. 555—563.
- Andreyuk E.I., Kozlova I.A., Kopte-va Zh.P. Mikrobnaya korroziya podzemnykh sooruzheniy [Microbial Corrosion of Underground Structures]. Biopovrezhdeniya i biokorroziya v stroitel'stve : materialy II Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Biodamages and Biocorrosion in the Construction : Materials of the II International Science and Technical Conference]. Saransk, 2006, pp. 79—99. (In Russian)
- Antonov V.B. Vliyanie biopovrezhdeniy zdaniy i sooruzheniy na zdorov'e cheloveka [Influence of Biodamages of Buildings and Structures on Human Health]. Biopovrezhdeniya i biokorroziya v stroitel'stve : materialy II Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Biodamages and Biocorrosion in the Construction : Materials of the II International Science and Technical Conference]. Saransk, 2006, pp. 238—242. (In Russian)
- Erofeev V.T., Kaznacheev S.V., Bogatov A.D., Spirin V.A., Svetlov D.A. Biotsidnye tsementnye kompozity s dobavkami, soderzhashchimi guanidin [Biocide Cement Composites with Additives Containing Aminoethanamidine]. Privolzhskiy nauchnyy zhurnal [Volga Region Scientific Journal]. 2010, no. 4, pp. 87—94. (In Russian)
- Pokrovskaya E.N., Koteneva I.V. Biopovrezhdeniya istoricheskikh pamyatnikov [Biodamages of Historical Monuments]. Biopovrezhdeniya i biokorroziya v stroitel'stve : materialy II Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Biodamages and Biocorrosion in the Construction : Materials of the II International Science and Technical Conference]. Saransk, 2004, pp. 245—248. (In Russian)
- Ivanov F.M. Biokorroziya neorganicheskikh stroitel'nykh materialov [Biocorrosion of Nonorganic Construction Materials]. Biopovrezhdeniya v stroitel'stve : sbornik nauchnykh trudov [Biodamages in Construction : Collection of Scientific Works]. Moscow, Stroyizdat Publ., 1984, pp. 183—188. (In Russian)
- Videla H.A., Herrera L.K. Microbiologically Influenced Corrosion: Looking to the Future. International Microbiology. 2005, no. 8 (3), pp. 169—180.
- Ramesh Babu B., Maruthamuthu S., Rajasekar A. Microbiologically Influenced Corrosion in Dairy Effluent. International Journal of Environmental Science & Technology. 2006, vol. 3, no. 2, pp. 159—166. DOI: http://dx.doi.org/10.1007/BF03325920.
- Yudovich M.E., Ponomarev A.N. Nanomodifikatsiya plastifikatorov. Regulirovanie ikh svoystv i prochnostnykh kharakteristik litykh betonov [Nanomodification of Plastifiers. Regulation of their Properties and the Strength Characteristics of Liquid Concretes]. StroyPROFIl' [Construction Profile]. 2007, no. 6, pp. 49—51. (In Russian)
- Eletskiy A.V. Uglerodnye nanotrubki [Carbon Nanotubes]. Uspekhi fizicheskikh nauk [Advances of Physical Sciences]. 1997, vol. 167, no. 9, pp. 945—972. (In Russian)
- Bazhenov Yu.M., Falikman V.R., Bulgakov B.I. Nanomaterialy i nanotekhnologii v sovremennoy tekhnologii betonov [Nanomaterials and Nanotechnologies in the Present-day Concrete Technology]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 12, pp. 125—133. (In Russian)
- Kalashnikov V.I., Erofeev V.T., Moroz M.N.,Troyanov I.Yu., Volodin V.M., Suzdal'tsev O.V. Nanogidrosilikatnye tekhnologii v proizvodstve betonov [Nanohydrosilicate Technologies in Concrete Production]. Stroitel'nye materialy [Construction Materials]. 2014, no. 5, pp. 89—91. (In Russian)
- Harrison B.S., Atala A. Carbon Nanotube Application for Tissue Engineering. Biomaterials. 2007, no. 28 (II), pp. 344—353. DOI: http://dx.doi.org/10.1016/j.biomaterials.2006.07.044.
- Zanello L.P., Zhao B., Hu H., Haddon R.C. Bone Cell Proliferation on Carbon Nanotubes. Nano Lett. 2006, no. 6 (III), pp. 562—567. DOI: http://dx.doi.org/10.1021/nl051861e.
- Smart S.K., Cassady A.I., Lu G.Q., Martin D.J. The Biocompatibility of Carbon Nanotubes. Carbon. 2006, vol. 44, no. 6, pp. 1034—1047. DOI: http://dx.doi.org/10.1016/j.carbon.2005.10.011.
- Korolev E.V. Nanotekhnologiya v stroitel'nom materialovedenii. Analiz sostoyaniya i dostizheniy. Puti razvitiya [Nanotechnology in Construction Material Science. Analysis of the State and Achievements]. Stroitel'nye materialy [Construction Materials]. 2014, no. 11, pp. 47—79. (In Russian)
-
Pilipenko Anton Sergeevich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, Assistant Lecturer, Department of Composite Materials Technology and Applied Chemistry, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Perfilov Vladimir Aleksandrovich -
Volgograd State University of Architecture and Civil Engineering (VSUACE)
Doctor of Technical Sciences, Professor, chair, Department of Oil and Gas Structures, Volgograd State University of Architecture and Civil Engineering (VSUACE), 1 Akademicheskaya str., Volgograd, 400074, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Mat'kov Kirill Viktorovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Master student, Department of Composite Materials Technology and Applied Chemistry, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The use of thermal insulation materials is an effective method to create an insulating envelope of a building, as well as to reduce energy costs and increase the durability of building structures. The properties of stone wool products and their operational durability is largely determined by the conditions of formation of the mineral wool carpet, uniform distribution of binder and its curing and the heat treatment conditions. Most domestic technologies are aimed at the production of mineral wool products with volume-oriented structure, which is formed using special units: spreader and corrugator placed in a production line. The next step to obtain the optimum structures is the production of dual density slabs. The denser upper layer receives mechanical loads caused by the operating conditions; the lower, less dense, but more thick layer performs the main function - insulation. The dual density slabs are produced on standard lines supplemented with a special unit, which is located in front of the heat treatment camera. Optimization of heat treatment parameters and prediction of the properties of materials is performed using software package.
DOI: 10.22227/1997-0935.2016.3.86-92
-
Erofeev Vladimir Trofimovich -
Ogarev Mordovia State University (Ogarev MSU)
Doctor of Technical Sciences, Professor, chair, Department of Construction Materials and Technologies, Ogarev Mordovia State University (Ogarev MSU), 68 Bolshevistskaya str., Saransk, 430005, Republic of Mordovia, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Likomaskina Mayya Alekseevna -
Ogarev Mordovia State University (Ogarev MSU)
postgraduate student, Ogarev Mordovia State University (Ogarev MSU), 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The article studies the effect of ultraviolet radiation, salt fog, variable humidity, and sea water of the Black Sea coast of Krasnodar region near the village of Abrau-Durso on the basic physical and mechanical properties of asphalt: the average density, water saturation, tensile strength at 122 °F, 68 °F and 32 °F, on the waterproofing quality of asphalt concrete. The samples were exhibited on a pier and in the soil on the coast of the Black Sea, in the sea water and in the air 400 m away from the sea. Test specimens were manufactured in accordance with Russian State Standard GOST 12801-98. Test duration was 240 days. It is found out that sea water has a negative effect on the majority of physical and mechanical characteristics of asphalt concrete. The authors found the compositions of asphalt concrete with increased resistance to the influence of climatic factors. Higher resistance is achieved in the case of dense asphaltic concrete ballast.
DOI: 10.22227/1997-0935.2016.6.63-79
References
- Rumyantsev A.N., Nanenkov A.A., Lomov A.A., Gotovtsev V.M., Sukhov V.D. Strukturirovannyy asfal’tobeton — novoe dorozhnoe pokrytie [Structured Asphalt Concrete — the New Road Surface]. Aktual’nye napravleniya nauchnykh issledovaniy XXI veka: teoriya i praktika : sbornik nauchnykh trudov po materialam mezhdunarodnoy zaochnoy nauchno-prakticheskoy konferentsii [Recent research trends of the XXI century: Theory and Practice :Collection of Scientific Works of the International Distance Science and Practice Conference]. Voronezh, 2013, no. 2, pp. 23—35. (In Russian)
- Boguslavskiy A.M., Korolev I.V., Gorelyshev N.V., Gezentsvey L.B. Dorozhnyy asfal’tobeton [Road asphalt Concrete]. 2nd edition, revised and enlarged. Moscow, Transport Publ., 1985, 350 p. (In Russian)
- Erofeev V.T., Bazhenov Yu.M., Kalgin Yu.I. i dr. Dorozhnye bitumomineral’nye materialy na osnove modifitsirovannykh bitumov (tekhnologiya, svoystva, dolgovechnost’) [Road Bituminous Materials Based on Modified Bitumen (Technology, Properties, Durability)]. Saransk, Izdatel’svo Mordovskogo universiteta Publ., 2009, 273 p. (In Russian)
- Zolotarev V.A. Dolgovechnost’ dorozhnykh asfal’tobetonov [Durability of Road Asphalt Concretes]. Khar’kov, Vishcha shkola Publ., 1977, 114 p. (In Russian)
- Ryb’ev I.A. Stroitel’noe materialovedenie [Construction Material Science]. Moscow, Vysshaya shkola Publ., 2003, 701 p. (In Russian)
- Shchepeteva L.S., Semenov S.S. Ob effektivnosti primeneniya polimerno-bitumnykh vyazhushchikh v asfal’tobetonnykh smesyakh dlya stroitel’stva pokrytiy avtomobil’nykh dorog [On the Effectiveness of the Use of Polymer-Bitumen Binders in Asphalt Mixtures for Road Pavement Construction]. Transport. Transportnye sooruzheniya. Ekologiya [Transport. Transport Facilities. Ecology]. 2014, no. 4, pp. 138—152. (In Russian)
- Rudenskiy A.V., Nikonova O.N., Kaziev M.G. Povyshenie dolgovechnosti asfal’tobetonov vvedeniem aktivnogo kompleksnogo modifikatora [Increasing the Durability of Asphalt Concrete by Introducing Active Complex Modifier]. Stroitel’nye materialy [Construction Materials]. 2011, no. 10, pp. 10—11. (In Russian)
- Inozemtsev S.S., Korolev E.V. Ekspluatatsionnye svoystva nanomodifitsirovannykh shchebenochno-mastichnykh asfal’tobetonov [Operational Properties of Nanomodified Stone Mastic Asphalt]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 3, pp. 29—39. (In Russian)
- Tyrtyshov Yu.P., Skorikov S.V. K voprosu o dolgovechnosti asfal’tovykh pokrytiy [To a Question of the Durability of Asphalt Pavements]. Vestnik Severo-Kavkazskogo federal’nogo universiteta [Newsletter оf North-Caucasus Federal University]. 2007, no. 3 (12), pp. 38—42. (In Russian)
- Kalgin Yu.I., Erofeev V.T. Razrabotka i issledovanie litogo asfal’tobetona na bitumno-kauchukovom vyazhushchem [Development and Research of Mastic Asphalt Concrete on the Bitumen-Rubber Binder]. Stroitel’nye materialy [Construction Materials]. 2007, no. 1, pp. 60—63. (In Russian)
- Babaev V.I. Starenie asfal’tobetona v usloviyakh yuga Rossii [Aging of Asphalt Concrete in the Conditions of Southern Russia]. Avtomobil’nye dorogi [Motor Roads]. 1994, no. 3, pp. 15—22. (In Russian)
- Solomatov V.I., Erofeev V.T., Smirnov V.F., Semicheva A.S., Morozov E.A. Biologicheskoe soprotivlenie materialov [Biological Materials Resistance]. Saransk, Izdatel’svo Mordovskogo universiteta Publ., 2001, 193 p. (In Russian)
- Kalgin Yu.I., Strokin A.S., Tyukov E.B. Perspektivnye tekhnologii stroitel’stva i remonta dorozhnykh pokrytiy s primeneniem modifitsirovannykh bitumov [Advanced Technologies of Construction and Repair of Road Surfaces with the Use of Modified Bitumen]. Voronezh, Voronezhskaya oblastnaya tipografiya Publ., 2014, 223 p. (In Russian)
- Nadezhko A.A., editor. Spravochnaya entsiklopediya dorozhnika (SED). Remont i soderzhanie avtomobil’nykh dorog [Reference Encyclopedia of a Roadman. Repair and Maintenance of Motor Roads]. Moscow, Informavtodor Publ., 2006, vol. 4: Dorozhnaya nauka [Road Science], 393 p. (In Russian)
- Metodicheskie rekomendatsii po vyboru bitumov dlya stroitel’stva dorozhnykh odezhd v razlichnykh klimaticheskikh usloviyakh [Recommendations for the Choice of Bitumen for the Construction of Pavements in Different Climatic Conditions]. Moscow, SoyuzdorNII Publ., 1974, 32 p. (In Russian)
- Rebinder P.A. Fiziko-khimicheskaya mekhanika dispersnykh struktur [Physical and Chemical Mechanics of Disperse Structures]. Moscow, Nauka Publ., 1966, pp. 6—12. (In Russian)
- Kiselev V.P., Efremov A.A., Kemenev N.V., Bugaenko M.B. Organicheskiy komponent asfal’tobetonnykh smesey [The Organic Component of Asphalt Concrete Mixes]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [Vestnik Tomsk State University of Architecture and Building]. 2012, no. 3, pp. 207—218. (In Russian)
- Erofeev V.T., Sal’nikova A.I., Kablov E.N., Startsev O.V., Varchenko E.A. Issledovanie dolgovechnosti bitumnykh kompozitov v usloviyakh peremennoy vlazhnosti, ul’trafioletovogo oblucheniya i morskoy vody [Investigation of Durability of Bitumen Composites under Variable Humidity, UF Exposure and Sea Water]. Fundamental’nye issledovaniya [Fundamental Research]. 2014, no. 12, pp. 2549—2556. (In Russian)
- Rudenskiy A.V. Dorozhnye asfal’tobetonnye pokrytiya [Road Asphalt Concrete Coatings]. Moscow, Transport Publ., 1992, 253 p. (In Russian)
- Rudenskiy A.V., Kalgin Yu.I. Dorozhnye asfal’tobetonnye pokrytiya na modifitsirovannykh bitumakh [Road Asphalt Concrete Coatings on Modified Bitumen]. Voronezh, Voronezhskiy gosudarstvennyy arkhitekturno-stroitel’nyy universitet Publ., 2009, 142 p. (In Russian)
- Kocherga V.G., Pronin V.V., Korableva T.A. Proektirovanie asfal’tobetonnykh smesey s zadannymi svoystvami [Design of Asphalt Mixes with the Desired Properties]. Aktual’nye voprosy proektirovaniya avtomobil’nykh dorog : sbornik nauchnykh trudov OAO «GiprodorNII» [Current Problems of Designing Car Roads. Collection of Scientific Works of ”GiprodorNII“]. Ekaterinburg, OAO «GiprodorNII» Publ., 2013, no. 4 (63), pp. 69—74. (In Russian)
- Solomatov V.I., Erofeev V.T., Kalgin Yu.I., Mishchenko N.I. Epoksidno-bitumnye kompozity [Epoxy-Bitumen Composites]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2000, no. 11, 22 p. (In Russian)
- Grushko I.M., Korolev I.V., Borshch I.M., Mishchenko G.M. Dorozhno-stroitel’nye materialy [Road Construction Materials]. 2nd edition, revised and enlarged. Moscow, Transport Publ., 1999, 357 p. (In Russian)
- Pechenyy B.G., Danil’yan E.A. Optimizatsiya tekhnologii prigotovleniya asfal’tobetonnykh smesey [Optimization of Production Technology of Asphalt Mixes]. Dorozhnaya tekhnika [Road Technology]. 2011, no. 11, pp. 12—15. (In Russian)
- Borisenko Yu.G., Gordienko E.V., Borisenko A.Yu. Optimizatsiya tekhnologii prigotovleniya asfal’tobetonnykh smesey [Optimization of Production Technology of Asphalt Mixes]. Fundamental’nye i prikladnye issledovaniya: problemy i rezul’taty [Fundamental and Applied Research: Challenges and Results]. 2012, no. 2, pp. 110—115. (In Russian)
- Solomatov V.I., Erofeev V.T., Kalgin Yu.I., Krasil’nikov A.A., Shcherbatykh A.A. Epoksidno-bitumnye polimerbetony [Epoxy-Bitumen Polymer Concretes]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [Proceedings of Higher Educational Institutions. Construction]. 2000, no. 7—8, p. 34. (In Russian)
- Lavrukhin V.P., Kalgin Yu.I., Erofeev V.T. Ustalostnaya dolgovechnost’ asfal’tobetonov na modifitsirovannykh bitumakh [The Fatigue Life of Asphalt Concrete Based on Modified Bitumen]. Vestnik Mordovskogo universiteta [Mordovia University Bulletin]. 2001, no. 3—4, p. 128. (In Russian)
-
Zolina Tat’yana Vladimirovna -
State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU")
Candidate of Technical Sciences, Professor, First Vice-rector, State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU"), 18 Tatishcheva str., Astrakhan, 414000, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
This paper considers and asserts the need to obtain the results of inspection of a building at the stage of its commissioning in order to apply comprehensive methodology for assessing its residual life. The author proposes to build regression relationship by correlating the levels of the time series dynamics of stress at certain points of the object calculation scheme considering the results of subsequent surveys. It allows estimating the wear rate of structural elements. The assessment of the reliability and durability of the building frame in a deterministic form is based on the limit states method. The application of this method allows taking into account the random nature of not only the combination of existing loads, but also the strength properties of construction materials by creating a system of safety factors.
DOI: 10.22227/1997-0935.2014.11.98-108
References
- Rayzer V.D. Teoriya nadezhnosti v stroitel’nom proektirovanii : monografiya [Reliability Theory in Construction Design: Monograph]. Moscow, ASV Publ., 1998, 304 p. (In Russian).
- Sadchikov P.N., Zolina T.V. Sistematizatsiya metodov rascheta, analiza i prognozirovaniya rabotosposobnosti ob”ektov nedvizhimosti [Classification of Calculation Methods, Analysis and Prediction of Performance of Real Estate]. Perspektivy razvitiya stroitel'nogo kompleksa : materialy VII mezhdunarodnoy nauchno-prakticheskoy konferentsii professorsko-prepodavatel'skogo sostava, molodykh uchenykh i studentov 28—31 oktyabrya 2013 [Proceedings of the 7th International Scientific and Practical Conference of Academic Staff, Young Scientists and Students, October 28—31 "Prospects of Building Complex Development]. Under the general editorship of Gutmana V.A., Khachen'yana A.L. Astrakhan, GAOU AO VPO «AISI» Publ., 2013, vol. 1, pp. 102—107. (In Russian).
- Gordeev V.N., Lantukh-Lyashchenko A.I., Pashinskiy V.A., Perel’muter A.V., Pichugin S.F. Nagruzki i vozdeystviya na zdaniya i sooruzheniya [Loads and Effects on Buildings and Structures]. Moscow, ASV Publ., 2007, 482 p. (In Russian).
- Pshenichkina V.A., Belousov A.S., Kuleshova A.N., Churakov A.A. Nadezhnost’ zdaniy kak prostranstvennykh sostavnykh sistem pri seysmicheskikh vozdeystviyakh [Reliability of Buildings as Spatial Composite Systems under Seismic Actions]. Volgograd, VolgGASU Publ., 2010, 180 p. (In Russian).
- Chirkov V.P. Veroyatnostnye metody rascheta massovykh zhelezobetonnykh konstruktsiy [Probabilistic Methods of Calculation of Large Scale Reinforced Concrete Structures]. Moscow, Transport Publ., 1980, 134 p. (In Russian).
- Rzhanitsyn A.R. Teoriya rascheta stroitel’nykh konstruktsiy na nadezhnost’ [Theory of Reliability Calculation of Building Structures]. Moscow, Stroyizdat Publ., 1978, 240 p.
- Pshenichkin A.P. Osnovy veroyatnostno-statisticheskoy teorii vzaimodeystviya sooruzheniy s neodnorodno deformiruemymi osnovaniyami [Fundamentals of Probabilistic Theory of Cooperation of a Building with the Heterogeneous Deformed Grounds]. Volgograd, VolgGASU Publ., 2006, 226 p. (In Russian).
- Luzhin O.V. Veroyatnostnye metody rascheta sooruzheniy [Probabilistic Methods of Calculation of a Building]. Moscow, MISI im. V.V. Kuybysheva Publ., 1983, 78 p. (In Russian).
- Lychev A.S. Veroyatnostnye metody rascheta stroitel’nykh elementov i system [Probabilistic Methods of Calculation of Building Elements and Systems]. Moscow, ASV Publ., 1995, 143 p. (In Russian).
- Bulgakov S.N., Tamrazyan A.G., Rakhman I.A., Stepanov A.Yu. Snizhenie riskov v stroitel'stve pri chrezvychaynykh situatsiyakh prirodnogo i tekhnogennogo kharaktera [Reduction of Risks in Construction at the Emergencies of Natural and Technogenic Character]. Moscow, MAKS Press Publ., 2004, 304 p. (In Russian).
- Kul’terbaev Kh.P., Pshenichkina V.A. Sluchaynye protsessy i kolebaniya stroitel’nykh konstruktsiy i sooruzheniy [Casual Processes and Vibrations of Building Constructions and Structures]. Volgograd, VolgGASU Publ., 2006, 356 p. (In Russian).
- Skladnev N.N., Kurzanov A.M. Sostoyanie i puti razvitiya raschetov na seysmostoykost’ [State and Ways of Development of Seismic Strength Calculations]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Building]. 1990, no. 4, pp. 3—9. (In Russian).
- Bolotin V.V. Stochastic Models of Fracture with Applications to the Reliability Theory. Structural Safety and Reliability. Amsterdam, Oxford, New York, Elsevier, 1981, pp. 31—56.
- Ditlevsen O. Reliability against Defect Generated Fracture. Journal of Structural Mechanics. 1981, vol. 9, no. 2, pp. 115—137.
- Blockley D.I. Reliability Theory — Incorporating Gross Errors. Structural Safety and Reliability. Amsterdam, Oxford, New York, Elsevier, 1981, pp. 259—282.
- Lin Y.K., Shih T.Y. Column Response to Horizontal and Vertical Earthquakes. Journal of Engineering Mechanics Division, ASCE. 1980, vol. 106, no. EM-6, pp. 1099—1109.
- Moan T., Holand I. Risk Assessment of Offshore Structures: Experience and Principles. Structural Safety and Reliability. Amsterdam, Oxford, New York, Elsevier, 1981, pp. 803—820.
- Brown C.B. Entropy Constructed Probabilities. Proceeding ASCE. 1980, vol. 106, no. EM-4, pp. 633—640.
- Holicky M., Ostlund L. Vagueness of Serviceability Requirements. Proceeding the International Conference "Design and Assessment of Building Structures". Prague, 1996, vol. 2, pp. 81—89.
- Hoef N.P. Risk and Safety Considerations at Different Project Phases. Safety, Risk and Reliability — Trends in Engineering. International Conference. Malta, 2001, pp. 1—8.
- Pshenichkin A.P., Pshenichkina V.A. Nadezhnost’ zdaniy i osnovaniy v osobykh usloviyakh [Reliability of Buildings and Foundations in Special Conditions]. Volgograd, VolgGASU Publ., 2009, 218 p. (In Russian).
- Zolina T.V., Sadchikov P.N. Kontseptual’naya skhema issledovaniya napryazhenno-deformirovannogo sostoyaniya promyshlennogo zdaniya [Conceptual Scheme for Investigating the Stress-Strain State of an Industrial Building]. Vestnik Volgogradskogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2013, no. 33 (52), pp. 47—50. (In Russian).
- Zolina T.V. Svodnyy algoritm rascheta promyshlennogo ob”ekta na deystvuyushchie nagruzki s otsenkoy ostatochnogo resursa [Synthesis Algorithm for Calculating Existing Load on an Industrial Facility with the Assessment of Residual Life]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 6, no. 3—5. (In Russian).
- Zolina T.V., Sadchikov P.N. Metodika otsenki ostatochnogo resursa ekspluatatsii promyshlennogo zdaniya, osnashchennogo mostovymi kranami [Methods of Assessing the Residual Life of Industrial Buildings, Equipped with Overhead Cranes]. Vestnik Volgogradskogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2013, no. 33 (52), pp. 51—56. (In Russian).
- Zolina T.V., Sadchikov P.N. Programmno-raschetnyy kompleks «DINCIBnew». Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM ¹ 2014613866.09.04.2014. [Software and Calculation Complex "DINCIB-new". Certificate of State Registration of Computer Programs no. 2014613866, 9 April 2014]. (In Russian).
-
Pokrovskaya Elena N. -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, Professor, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
Introduction. Monuments of wooden architecture - an invaluable part of the national culture, they reflect the originality and independence of the national architecture. The problem of preservation of monuments of wooden architecture with the passage of time is becoming increasingly important. Many monuments were burned; some were destroyed due to the loss of structural strength under the influence of humidity, biodestruction, etc. Materials and methods. The samples of partially destroyed wood of the Anglican Church of the city of Arkhangelsk, built in 1833, were studied. The samples were subjected to surface modification with the formation of a two-layer sandwich coating, the first layer of which was various phosphorus-containing flame retardants, and the second layer - polymer composites. As polymer composites, glue based on epoxy resin and polyurethane composition “Akvidur TT” were used. The reactive organophosphorus compounds, capable of forming covalent bonds with wood polymers in the surface layer of partially destroyed wood, were chosen as flame retardants. Modified samples were subjected to physicochemical studies to determine the strength, fire resistance, hydrophobicity. The strength of the modified samples was compared with the strength of the untreated samples of partially destroyed wood of the Anglican Church of Arkhangelsk. The appearance of covalent bonds between the wood and the modifier was determined by Fourier-transform spectroscopy. Results. Surface modification of the samples of the monument increased the strength of wood by 2-2.5 times, reduced water absorption by 3 times, reduced the loss of mass during combustion according to GOST 27484-87 to 5.0-6.4 %. Conclusions. The study solves the urgent problem of preservation of monuments of wooden architecture by increasing the strength of partially destroyed wood, as well as giving it fire resistance, hydrophobicity and biostability in carrying out restoration work.
DOI: 10.22227/1997-0935.2018.11.1305-1314
-
Kirillov Andrey M. -
Automotive Road College
candidate of physical and mathematical sciences, teacher of physics and astronomy, Automotive Road College, 26a/1 Yana Fabritsiusa st., Sochi, Krasnodar region, 354008, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
Subject: interaction of the moving vehicle with asphalt concrete road pavement. Research objectives: analysis of influence of dynamic loads from the moving vehicle on the road pavement with asphalt concrete. Materials and methods: interaction models are based on the impulse approach (impulse of dynamic loads) and dynamic factor. Results: creation of the mathematical model which is based on the impulse approach and allows us to determine the load on the pavement as a function of vehicle speed. Conclusions: 1) when the speed increases, the force exerted by the moving vehicle on pavement quickly decreases, reaching a minimum at some speed, and then slowly increases; 2) there exists the optimum vehicle speed for the highway exploitation, at which the impact of the force on the road is minimum; it is possible to increase the pavement longevity if this speed for road exploitation is complied with.
DOI: 10.22227/1997-0935.2018.8.959-972
-
Hoshim R. Ruziev -
Bukhara Engineering Technology Institute
, Bukhara Engineering Technology Institute, 15 K. Murtazaev st., Bukhara, 200100, Uzbekistan.
Introduction. The paper presents theoretical and experimental studies of the improvement of the structure of lightweight concrete, which provides the maximum value of the attenuation of the amplitude of external air temperature fluctuations during the passage of heat flow through the walls and the reduction of thermal conductivity, the results of the 3-factor experiment on determining the rational structure of claydite concrete and the methods for their processing. To determine the purposeful structure of the composition of lightweight concrete and its thermal conductivity, a complex of research works was carried out at the Central Research Institute for Housing, applied to lightweight concrete for exterior walls. The main optimization criterion was the maximum reduction in thermal conductivity while providing the necessary strength, durability and waterproofness. The purpose of this work is theoretical research and experimental substantiation of methods for improving the structure of lightweight concrete used for a hot climate with improved functional performance. Materials and methods. As material a claydite gravel with bulk density p = 400 kg/m3 of Lianozovsky plant (Moscow) was used, at a ratio of 40 % of the fraction 5-10 mm and 60 % of the fraction 10-20 mm and a Portland cement of the brand “400” of the Voskresensky plant, not plasticized. The water flow rate was varied for 10 seconds, to ensure the mixture to be vibropacked.As a foam generating agent and plasticizer, the “Saponified wood resin” (SDO) was used in a 5 % aqueous solution. The methods were adopted in accordance with the Recommendation on the technology of factory production and quality control of lightweight concrete and large-panel constructions of residential buildings. M. CNIIEP dwelling, 1980. In the department of the lightweight concrete application at CNIIEP of dwelling, a method for the purposeful formation of the structure and composition of lightweight concrete, which provides a set of physic-technical, technological and technical-economic requirements, was developed. Results. Calculations are reduced to obtaining mathematical models of dependence of strength R, density ρ, thermai conductivity λ and other indicators of concrete characteristics from initial factors in the form of regression equations. Based on the equations obtained, it was possible to determine the expedient composition of lightweight concrete, which, in combination with the operational characteristics, provides comparable results of the technical and economic characteristics of a single-layer structure from the projected type of lightweight concrete. Conclusions. 1. An improved composition of the structural and heat insulating lightweight concrete for the load-bearing part of the structure, providing its high thermal stability by chemical additives and low consumption of porous sand, was developed. An algorithm for selecting its composition on computer is made. 2. The conducted researches in the field of design of external enclosing structures for hot climate conditions have shown that: single-layer exterior wall constructions with massiveness of D ≤ 4 provide minimum allowable values of heat flux attenuation and temperature fluctuation amplitude on the inner wall surface.
DOI: 10.22227/1997-0935.2018.10.1211-1219