Error
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering

DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Developing arithmetic deformation model of complex reiforced concrete plate with polymer concrete layer under the impact of corrosive medium

Vestnik MGSU 3/2014
  • Treshchev Aleksandr Anatol'evich - Tula State University (TulGU) Doctor of Technical Sciences, Professor, Head, Department of Construction, Building Materials and Structures, Tula State University (TulGU), 92 prospect Lenina, Tula, 300012, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Telichko Viktor Grigor'evich - Tula State University (TulGU) Candidate of Technical Sciences, Associate Professor, Department of Construction, Building Materials and Structures, Tula State University (TulGU), 92 prospect Lenina, Tula, 300012, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bashkatov Aleksandr Valer'evich - Tula State University (TulGU) postgraduate student, Department of Construction, Building Materials and Structures, Tula State University (TulGU), 92 prospect Lenina, Tula, 300012, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 126-132

The arithmetic model of reinforced concrete slab distortion with a polymer-concrete layer exposed to aggressive influences is introduced. The relevance of this object choice as a matter of actual practice. The least contradictory model for specification of the strain-stress state of reinforced concrete constructions is sampled. The most efficient way of solving such tasks is the finite elements method, which lacks the drawbacks of the finite differences method. In this article, the arithmetic model of hybrid finite element qualification for the armored reinforced concrete slabs design is considered. The problem of reinforced concrete slab with a polymer-concrete layer bending is dealt with in the presence of dynamic deformation and simple loading, which gives the opportunity to introduce concrete as a nonlinear material with its elastic-plastic properties, which stay within the strain potential limits. The deformation of creep is not taken into account. The incremental equations connecting stress and deformation increments are provided.

DOI: 10.22227/1997-0935.2014.3.126-132

References
  1. Treshchev A.A. Teoriya deformirovaniya i prochnosti materialov, chuvstvitel'nykh k vidu napryazhennogo sostoyaniya. Opredelyayushchie sootnosheniya [The Theory of Deformation and Strength of Materials, Sensitive to a Form of Strained Stress. Defi ning Relations]. Tula, TulGU Publ., 2008, 264 p.
  2. Cook R.D. Two Hybrid Elements for Analysis of Thick Thin and Sandwich Plates. International Journal for Numerical Methods in Engineering. 1972, vol. 5, no. 2, pp. 277—288. DOI: 10.1002/nme.1620050213.
  3. Telichko V.G., Treshchev A.A. Gibridnyy konechnyy element dlya rascheta prostranstvennykh konstruktsiy s uslozhnennymi svoystvami [Hybrid Finite Element for Calculating Spatial Structures with Complicated Properties]. Aktual'nye problemy sovremennogo stroitel'stva: sbornik nauchnykh trudov 32 Vserossiyskoy nauchno-tekhnicheskoy konferentsii [Proceedings of 32nd Russian Scientific and Technical Conference "Current Problems of the Modern Construction"]. Penza, PGASA Publ., 2003, Part 2 Stroitel'nye konstruktsii [Building Structures], pp. 138—143.
  4. Artemov A.N., Treshchev A.A. Poperechnyy izgib zhelezobetonnykh plit s uchetom treshchin [Transverse Bending of Concrete Slabs with Account for Cracks]. Izvestiya vuzov. Stroitel'stvo [News of Higher Educational Institutions. Construction]. 1994, no. 9—10, pp. 7—12.
  5. Tong P., Pian T.H.H. A Variation Principle and the Convergence of a Finite-element Method Based on Assumed Stress Distribution. International Journal of Solids and Structures. 1969, vol. 5, no. 5, pp. 463—472. DOI: 10.1016/0020-7683(69)90036-5.
  6. Geniev G.A., Kissyuk V.N., Tyupin G.A. Teoriya plastichnosti betona i zhelezobetona [Plasticity Theory of Concrete and Reinforced Concrete]. Moscow, Stroyizdat Publ., 1974, 316 p.
  7. Telichko V.G., Treshchev A.A. Matematicheskaya model' rascheta prostranstvennykh konstruktsiy s uslozhnennymi svoystvami [A Mathematical Model for Calculating Spatial Structures with Complicated Properties]. Matematicheskoe modelirovanie i kraevye zadachi: trudy Vserossiyskoy nauchnnoy konferentsii [Proceedings of the All-Russian Scientific Conference "Mathematical Modeling and Boundary Value Problems"]. Samara, SamGTU Publ., 2004, Part 1, pp. 223—226.
  8. Petrov V.V. Postroenie inkremental'nykh sootnosheniy dlya fi zicheski nelineynogo materiala s razvivayushcheysya neodnorodnost'yu svoystv [Building Incremental Relations for Physically Non-linear Material with Developing Heterogeneity of Properties]. Problemy prochnosti elementov konstruktsiy pod deystviem nagruzok i rabochikh sred [Problems of Structures' Elements Strength under Loading and Working Environments]. Saratov, Saratov University, 2005, pp. 6—10.

Download

Main formulations of the finite element method for the problems of structural mechanics. Part 2

Vestnik MGSU 12/2014
  • Ignat’ev Aleksandr Vladimirovich - Volgograd State University of Architecture and Civil Engineering (VSUACE) Candidate of Technical Sciences, Associate Professor, Department of Structural Mechanics, Volgograd State University of Architecture and Civil Engineering (VSUACE), 1 Akademicheskaya str., Volgograd, 400074, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 40-59

The author offers a classification of Finite Element formulations, which allows orienting in a great number of the published and continuing to be published works on the problem of raising the efficiency of this widespread numerical method. The second part of the article offers examination of straight formulations of FEM in the form of displacement approach, area method and classical mixed-mode method. The question of solution convergence according to FEM in the form of classical mixed-mode method is considered on the example of single-input single-output system of a beam in case of finite element grid refinement. The author draws a conclusion, that extinction of algebraic equations system of FEM in case of passage to the limit is not a peculiar feature of this method in general, but manifests itself only in some particular cases. At the same time the obtained results prove that FEM in mixed-mode form provides obtaining more stable results in case of finite element grid refinement in comparison with FEM in the form of displacement approach. It is quite obvious that the same qualities will appear also in two-dimensional systems.

DOI: 10.22227/1997-0935.2014.12.40-59

References
  1. Gorodetskiy A.S., Zavoritskiy V.I., Lantukh-Lyashñhenko A.I., Rasskazov A.O. Metod konechnykh elementov v proektirovanii transportnykh sooruzheniy [Finite Element Method in Transport Constructions Design]. Moscow, Transport Publ., 1981, 143 p. (In Russian)
  2. Postnov V.A., Kharkhurim I.Ya. Metod konechnykh elementov v raschetakh sudovykh konstruktsiy [Finite Element Method in Ship Structures Calculation]. Leningrad, Sudostroenie Publ., 1974, 344 p. (In Russian)
  3. Sekulovich M. Metod konechnykh elementov [Finite Element Method]. Translated from Serbian Yu.N. Zueva, editor V.Sh. Barbakadze. Moscow, Stroyizdat Publ., 1993, 664 p. (In Russian)
  4. Ignat’ev A.V. Osnovnye formulirovki metoda konechnykh elementov v zadachakh stroitel’noy mekhaniki. Chast’ 1 [Essential FEM Statements Applied to Structural Mechanics Problems. Part 1]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 11, pp. 37—57. (In Russian)
  5. Bogner F., Fox R., Schmit L. A Cylindrical Shell Discrete Element. AIAA. 1967, vol. 5, no. 4, pp. 745—750. DOI: http://dx.doi.org/10.2514/3.4056.
  6. Allman D.J. Treugol’nye konechnye elementy dlya rascheta izgibaemykh plastin pri postoyannykh i lineyno raspredelennykh izgibayushchikh momentakh [Trigonal Finite Elements for Bending Plates Calculation in Case of Permanent and Linearly Distributed Bending Moments]. Raschet uprugikh konstruktsiy s ispol’zovaniem EVM [Calculation of Elastic Structures Using Computer]. Translated from English, editor A.P. Filin. Leningrad, Sudostroenie Publ., 1974, pp. 80—101. (In Russian)
  7. Klochkov Yu.V. Razvitie teorii lineynogo i nelineynogo deformirovaniya obolochek na osnove MKE s uchetom smeshcheniya kak zhestkogo tselogo i izmeneniya tolshchiny [Development of the Theory of Linear and Non-linear Deformation of Shells Basing on FEM with Account for the Displacement as Stiff Entire and Change of the Width]. Dissertation of the Doctor of Technical Sciences. Volgograd, Volgogradskaya GSKhA Publ., 2001, 326 p. (In Russian)
  8. Bathe K.-J., Wilson E.L. Numerical Methods in Finite Element Analysis, New Jersey, Prentice-Hall, 1976, 528 p.
  9. Bathe K. Metody konechnykh elementov [Finite Elements Methods]. Transl. from English by V.P. Shidlovskiy. Moscow, FIZMATLIT Publ., 2010, 1024 p. (In Russian)
  10. Tsybenko A.S. Primenenie treugol’nykh trekhuzlovykh nesoglasovannykh elementov dlya resheniya osesimmetrichnykh zadach teorii uprugosti [Application of Trigonal Nonconforming Elements for Solving Axisymmetric Tasks of Elasticity Theory]. Problemy plastichnosti [Elasticity Problems]. 1986, no. 3, pp. 79—83.
  11. Semenov V.A., Semenov P.Yu. Hybrid Finite Elements for Analysis of Shell Structures. Proc. International Congress ICSS—98, 22—26 June 1998, Moscow, Russia. Moscow, 1998, vol. 1, pp. 244—251.
  12. Bathe K.J. Finite Element Procedures. Prent. Hall, Englewood Cliffs, 1996, 1036 p.
  13. Fraeijs de Veubeke B., Sander G. An Equilibrium Model for Plate Bending. International J. Solids and Structures. 1968, vol. 4, no. 4, pp. 447—468. DOI: http://dx.doi.org/10.1016/0020-7683(68)90049-8.
  14. Tyukalov Yu.A. Reshenie zadach stroitel’noy mekhaniki metodom konechnykh elementov v napryazheniyakh na osnove funktsionala dopolnitel’noy energii i printsipa vozmozhnykh peremeshcheniy [Solving the Tasks of Structural Mechanics by Finite Element Method in Strains Basing on Additional Energy Functional and Principle of Possible Sisplacements]. Dissertation of the Doctor of Technical Sciences. Kirov, VyatGY Publ., 2006, 314 p. (In Russian)
  15. Ignat’ev V.A., Ignat’ev A.V., Zhidelev A.V. Smeshannaya forma metoda konechnykh elementov v zadachakh stroitel’noy mekhaniki [Mixed Form of Finite Element Method in Problems of Structural Mechanics]. Volgograd, VolgGASU Publ., 2006, 172 p. (In Russian). (In Russian)
  16. Ignat’ev A.V., Gabova V.V. Algoritm staticheskogo rascheta ploskikh sterzhnevykh sistem po metodu konechnykh elementov v smeshannoy forme [Algorithm of Static Analysis of Flat Truss Structures Using Finite Element Method in Mixed Mode Form]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Estestvennye nauki [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Natural Sciences]. 2007, no. 6 (23), pp. 72—77. (In Russian)
  17. Rekunov S.S., Voronkova G.V. Osobennosti rascheta plastinok po metodu konechnykh elementov v smeshannoy forme [Features of Calculating Plates Using Finite Elements Method in Mixed-Mode Form]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2007, no. 7 (26), pp. 74—77. (In Russian)
  18. Maslennikov A.M. Raschet stroitel’nykh konstruktsiy chislennymi metodami [Calculation of Building Structures Using Numerical Methods]. Leningrad, LGU Publ., 1987, 224 p. (In Russian)
  19. Pokrovskiy A.A. Smeshannaya forma MKE v raschetakh sterzhnevykh sistem i sploshnoy sredy [Mixed-Mode Form of FEM in Calculation of Truss Systems and Continuous Medium]. Dissertation of the Doctor of Technical Sciences. Penza, PGASA Publ., 2000, 308 p. (In Russian)

Download

MODELING OF BLAST EFFECTS ON KEY STRUCTURAL ELEMENTS OF HIGH-RISE BUILDINGS

Vestnik MGSU 7/2012
  • Agafonova Vera Valer'evna - Moscow State University of Civil Engineering (MSUCE) postgraduate student, Department of Technical Regulations, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 109 - 113

In view of persistent threats of terrorist attacks, protection of high-rise and unique buildings and structures from the above impacts remains one of the top-priority objectives of safety and security assurance projects. The author provides an overview of blast effects on a reinforced concrete column simulated through the employment of ANSYS software package. Possible patterns of the effects are considered. The semulation is performed in three sequent stages. At Stage 1, the initial stress-strain state of the column is simulated. At Stage 2, non-stationary gas dynamics of the explosion of 50 kg of TNT and the stress-strain state of the column are simulated. At Stage 3, destruction of the column, damaged by the explosion, is analyzed. The time period of complete destruction of the column after the explosion is ~ 100 ms. Numerical simulation of the environment by LS-DYNA software system assures accurate calculations; therefore, this software programme may be used to develop reliable actions aimed at reduction of effects of the explosion in order to prevent the progressive collapse.

DOI: 10.22227/1997-0935.2012.7.109 - 113

References
  1. Telichenko V.I., Roytman V.M., Slesarev M.Yu., Shcherbina E.V. Osnovy kompleksnoy bezopasnosti stroitel’stva [Basics of Comprehensive Safety of Construction]. Moscow, ASV Publ., 2011, 168 p.
  2. Telichenko V.I., Roytman V.M. Obespechenie stoykosti zdaniy i sooruzheniy pri kombinirovannykh osobykh vozdeystviyakh s uchastiem pozhara — bazovyy element sistemy kompleksnoy bezopasnosti. Povyshenie bezopasnosti zdaniy i sooruzheniy v protsesse stroitel’stva i ekspluatatsii (19 May 2010) [Assurance of Resistancce of Buildings and Structures to Special Complex Impacts Inclusive of Fires as the Basic Element of the System of Comprehensive Safety. Improvement of Safety of Buildings and Structures in the course of Construction and Maintenance]. Proceedings of the 1st National Congress for Comprehensive Safety in Civil Engineering 2010, 18—21 May 2010, Moscow, no. 9.
  3. Roytman V.M. Stoykost’ zdaniy i sooruzheniy protiv progressiruyushchego obrusheniya pri kombinirovannykh osobykh vozdeystviyakh s uchastiem pozhara [Resistance of Buildings and Structures to Progressive Collapse, If Exposed to Combined Special Impacts Inclusive of the Fire]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, special issue no. 4, 37—59.
  4. Roytman V.M. Osnovy pozharnoy bezopasnosti vysotnykh zdaniy [Basics of Fire Safety of High-Rise Buildings]. Moscow, MGSU, 2009, 107 p.
  5. Telichenko V.I. Kontseptsiya zakonodatel’nogo obespecheniya bezopasnosti sredy zhiznedeyatel’nosti [Concept of the Legislative Framework of Safe Environment]. Proceedings of the General Meeting of the Russian Academy of Architecture and Civil Engineering Sciences, 2006, no. 2, vol. 1, pp. 236—241.
  6. Belostotskiy A.M., Dubinskiy S.I., Aul A.A. Verifikatsionnyy otchet po programmnomu kompleksu ANSYS Mechanical [Verification Report of ANSYS Mechanical Software] (4 volumes). StaDiO Research Centre, MSUCE, 2009.
  7. Roytman V.V., Pasman H.J., Lukashevich I.E. The Concept of Evaluation of Building Resistance against Combined Hazardous Effects “Impact-Explosion-Fire” after Aircraft Crash. Fire and Explosion Hazards. Proceedings of the Fourth International Seminar, 2003, Londonderry, NI, UK, pp. 283—293.
  8. Structural Analysis Guide, Documentation for ANSYS, Release 14. 2012.
  9. ANSYS Parametric Design Language Guide. ANSYS Release 12.1 Documentation. Canonsburg, ANSYS Inc., 2009.
  10. Rastorguev B.S., Plotnikov A.I., Khusnutdinov D.Z. Proektirovanie zdaniy i sooruzheniy pri avariynykh vzryvnykh vozdeystviyakh [Design of Buildings and Structures with Account for Exposure to Blast Effects]. Moscow, ASV Publ., 2007, 152 p.

Download

THERMAL REGIME OF MASSIVE CONCRETE DAMS WITH AIR CAVITIES IN THE SEVERE CLIMATE

Vestnik MGSU 12/2012
  • Aniskin Nikolay Alekseevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Engineering, Professor, Director of Institute of Hydrotechnical and Energy Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Nguen Hoang - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Hydraulic Engineering Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 212 - 218

Concrete massive head buttress dams and gravity dams with extended air cavities were widely used in the hydraulic engineering of Russia and CIS countries. Most of them were built in the severe climate with low average annual temperatures. These circumstances are to be considered in design of the above structures to contemplate technological and design actions aimed at improvement of the stress state of dams.
The solution to the three-dimensional temperature problem is considered in this paper on the basis of the following example of a dam: the height of a concrete buttress dam is 225.0 meters; it will be built in severe climatic conditions; the average annual temperature is - 8.5 °C; the minimum temperature in winter reaches -33 °C in January (average annual value) with an absolute minimum of -60 °C; the period of negative temperatures continues for 7 months in a year. As a result, the solution to the non-stationary temperature problem using the finite element method consists in the method by virtue of which the temperature field of the analyzed area for any moment in time is calculated on the basis of pre-set values of temperature factors variable over the time.
The thermal regime of the concrete dam with an air cavity can be adjustable by simple structural elements, including a heat-insulating wall and artificial heating of cavities. The required intensity and duration of heating are to be identified. Final conclusions about the most favorable thermal regime pattern will be made upon completion of fundamental calculations of the thermal stress state of the dam to be performed in the next phase of the research.

DOI: 10.22227/1997-0935.2012.12.212 - 218

References
  1. Protsenko Yu.D. Osobennosti ekspluatatsii massivno-kontrforsnykh plotin v surovykh klimaticheskikh usloviyakh [Operation of Massive Head Buttress Dams in Severe Climatic Conditions]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1966, no. 9, pp. 33—35.
  2. Teleshev V.I., Semenov N.G. Gidroelektrostantsiya na r. Mamakan [Hydraulic Power Plant on the Mamakan River]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1968, no. 5, pp. 1—4.
  3. Eydel’man S.Ya. Naturnye issledovaniya plotiny Bratskoy GES [Field Research of the Dam of Bratsk Hydraulic Power Plant]. Leningrad, Energiya Publ., 1968, 253 p.
  4. Kozinets G.L., Vul’fovich N.A., Denisov G.V., Potekhin L.P. Raschetnoe obosnovanie massivnoy gravitatsionnoy plotiny Kankunskoy GES s rasshirennymi polostyami [Analysis of the Massive Gravity Dam of Kankun HPP with Extended Cavities]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2012, no. 8, pp. 22—25.
  5. Mikheev M.A. Osnovy teploperedachi [Fundamentals of Heat Transfer]. Moscow, Gosenergoizdat Publ., 1956, 292 p.
  6. Plyat Sh.N., Tsybin A.M. Metod rascheta temperatury v zamknutykh polostyakh kontrforsnykh plotin [Method of Temperature Analysis inside Closed Cavities of Buttress Dams]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1973, no. 11, pp. 27—31.
  7. Plyat Sh.N., Tsybin A.M. Vliyanie razlichnykh faktorov na temperaturu vozdukha v polosti kontrforsnoy plotiny [Infl uence of Various Factors on the Air Temperature in the Cavity of a Buttress Dam]. Izvestiya VNIIG [All-soviet Scientific and Research Institute of Hydraulics]. 1974, vol. 106, pp. 82—88.
  8. Aniskin N.A. Temperaturnyy rezhim gravitatsionnoy plotiny iz ukatannogo betona [Thermal Regime of a Roller Compacted Concrete (RCC) Gravity Dam]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2005, no. 12, pp. 13—17.
  9. Aniskin N.A., Nguyen Dang Giang. Prognoz temperaturnogo rezhima betonnykh gravitatsionnykh plotin iz ukatannogo betona [Projecting the Thermal Regime of a Roller Compacted Concrete (RCC) Gravity Dam]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2007, no. 12, pp. 8—14.
  10. Orekhov V.G., Tolstikov V.V. Napryazhenno-deformirovannoe sostoyanie betonnoy plotiny Kankunskogo gidrouzla [Stress-deformation State of the Concrete Dam of Kankun HPP]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2012, no. 2, pp. 34—42.

Download

Results 1 - 4 of 4