Polynomial matrix symbols
Pages 124 - 128
The operator symbol is usually its image at homomorphy into some function algebra or even into other operator algebras. In this case it is usually supposed, that the kernel of homomorphism is an ideal of rather continuous operators. In this case for Fredholm property of an operator the inversibility of its symbol is needed and enough. The authors consider the algebra generated by a complex matrix. The authors proved the existence and uniqueness of random matrix representation in the form of the sum of nilpotent matrix and linear combination of minimal idempotent matrixes combination.
The obtained results allow generalization for infinite-dimensional operators and can be used in systems of linear differential equations and in mathematical statistics.
DOI: 10.22227/1997-0935.2012.9.124 - 128
- Gokhberg I.Ts., Krupnik N.Ya. Vvedenie v teoriyu odnomernykh singulyarnykh integral’nykh operatorov [Introduction into the Theory of One-dimentional Singular Integral Operators]. Kishinev, Shtiintsa Publ., 1973, 428 p.
- Myasnikov A.G., Sazonov L.I. Singulyarnye integral’nye operatory s nekarlemanovskim sdvigom [Singular Integral Operators with a non-Carleman shift]. Izvestiya Vuzov. Matematica. [Bulletins of Institutions of Higher Education. Mathematics]. 1980, no. 3, pp. 22—31.
- Khelemskiy A.Ya. Banakhovy i polinormirovannye algebry: obshchaya teoriya, predstavleniya, gomologii. [Banach and Polynormed Algebras: General Theory, Representations, Homologies]. Moscow, Nauka Publ., 1989, 464 p.
- Causa A. Some Remarks in Linear Spaces îf Nilpotent Matrices. Le Matematiche, 1998, vol. LIII, pp. 23—32.
- DeMarr R. Nonnegative Idempotent Matrices. Proc. Amer. Math. Soc. 1974, vol. 45, no. 2, pp. 185—188.
- Horn R.A., Johnson Ch.R. Matrichnyy analiz [Matrix Analysis]. Moscow, Mir Publ., 1989, 654 p.