-
Saltykov Ivan Petrovich -
Moscow State University of Civil Engineering (MGSU)
postgraduate student, Department of Architecture of
Civil and Industrial Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe
shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The author provides his multiple-factor approach to the assessment and creation of a comfortable
indoor environment with account for architectural, engineering and ecological parameters.
Architectural parameters include indoor space arrangement, color solutions, etc. The engineering
approach contemplates favorable acoustic, thermal, humidity and lighting conditions. Nowadays,
the problem of the indoor microclimate is resolvable through the assessment of its conditions and
further assurance of comfort with the help of multiple advanced engineering solutions. Civil engineering
solutions may also bring an adequate level of comfort through the application of effi cient
building materials. The ecological safety of any premises has an impact not only on the sense of
comfort, but on the physical stamina and health of residents. The comfort of the inhabited environment
also means appropriate electro-magnetic properties and adequate aeration.
Research projects and advanced solutions are to make their contribution into development of
new criteria of assessment of comfort, particularly, in the inadequate ecological and social urban
environment.
DOI: 10.22227/1997-0935.2012.8.189 - 196
References
- Zokoley S.V. Arkhitekturnoe proektirovanie, ekspluatatsiya ob”ektov, ikh svyaz’ s okruzhayushchey sredoy [Environmental Science Handbook for Architects and Builders]. Moscow, Stroyizdat Publ., 1984, 670 p.
- MGSN 3.01—01. Zhilye zdaniya. [Moscow City Building Requirements 3.01-01. Residential Buildings.] Moscow, 2001.
- Glazychev V.L. Technology of Environment Design. Master-class. Personal web-site of V.L. Glazychev. Available at: www.glazychev.ru. Date of access: 21.03.12.
- Nikerov V.A. Ekologichnyy dom glazami fi zika: sovety fi zika [Ecological House as Viewed by the Physicist: the Physicist’s Advice]. Moscow, Energoatomizdat Publ., 1992.
- Gagarin V.G., Zemtsov V.A., Igumnov N.M. Ravnoeffektivnost’ okonnykh blokov po parametram teplozashchity i svetopropuskaniya [Equal Effi ciency of Window Blocks in Terms of Thermal Resistance and Light Conductivity]. Krovel’nye i izolyatsionnye materialy [Roofi ng and Insulation Materials]. 2011, no. 4, pp. 41—43.
- Shadrin A.S., Shekhter F.L. Povyshenie effektivnosti resheniy bokovogo estestvennogo osveshcheniya [Improvement of Effi ciency of Lateral Daylight Solutions]. Svetotehnika [Illumination Engineering]. Moscow, 1990, no. 10, pp.
- Stetskiy S.V. K voprosu o sub”ektivnoy otsenke komfortnosti vnutrenney mikroklimaticheskoy sredy [Subjective Assessment of the Comfort of the Indoor Environment]. Stroitel’nye materialy, oborudovanie, tekhnologii XX veka [Construction Materials, Equipment and Technologies of the 20th Century]. 2008, no. 12, pp. 63—65.
- Kirilyuk M.A. Otsenka urovnya komfortnosti zhilishchno-kommunal’nogo i sotsial’no-bytovogo obustroystva sel’skogo poseleniya [Assessment of Comfort of Residential Housing, Utilities and Social Infrastructure of a Rural Settlement]. Mehanizatsiya stroitel’stva [Building Mechanization]. 2010, no. 12, pp. 4—6.
- Myagkov M.S. Gorod, arkhitektura, chelovek i klimat [City, Architecture, Person, Climate]. Moscow, Arkhitektura-S Publ., 2007, p. 343.
- Kholshchevnikov V.V., Lukov A.V. Klimat mestnosti i mikroklimat pomeshcheniy [Outdoor and Indoor Climate]. Moscow, ASV Publ., 2001.
-
Stetskiy Sergey Vyacheslavovich -
Moscow State University of Civil Engineering (MGSU)
Candidate of Technical Sciences, Professor, Department of Architecture of Civil and Industrial Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Chen Guanglong -
Moscow State University of Civil Engineering (MSUCE)
postgraduate student, Department of Architecture of Civil and Industrial Buildings, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The authors consider problems of optimum height (or length) of light wells in multi-storey
industrial buildings in the hot and sunny climate of southeast China. The researches were based
on the multi-component data analysis that included the analysis of dimensions of light wells in plan
view, analysis of natural light that they delivered and the time period of the use of the artificial light in
the workrooms of the above industrial buildings. Conclusions were made concerning the efficiency
of light wells in the upper and pre-upper storeys of similar industrial buildings.
Particular attention must be driven to the quality of the internal microclimate, which accrues
importance in the extreme weather conditions like hot and sunny climates. In the course of multiple
years, the problem of development and maintenance of the favourable indoor environment has
been the subject of research performed by the leading experts in building physics. The researches
concerning hot climates are mainly based on the research of the lighting, thermal and insulation
conditions in the said premises and development of architectural and structural concepts and solutions
aimed to improve these conditions.
DOI: 10.22227/1997-0935.2012.11.23 - 31
References
- Solov’ev A.K. Fizika sredy [Environmental Physics]. Moscow, ASV Publ., 2011, 344 p.
- Gusev N.M. Osnovy stroitel’noy fiziki [Fundamentals of Building Physics]. Moscow, Stroyizdat Publ., 1975, 330 p.
- Solov’ev A.K. Effektivnost’ verkhnego estestvennogo osveshcheniya proizvodstvennykh zdaniy [Efficiency of Overhead Natural Lighting in Industrial Buildings]. Moscow, 2010, 72 p.
- Skat’ D.D. Kompleksnyy metod rascheta zenitnogo osveshcheniya zdaniy [Multi-component Method of Analysis of Overhead Lighting in Buildings]. Poltava, 1999, 20 p.
- Zemtsov V.A. Voprosy proektirovaniya i rascheta estestvennogo osveshcheniya pomeshcheniy cherez zenitnye fonari shakhtnogo tipa [Issues of Design and Analysis of Natural Lighting of Premises through Shaft–type Skylights]. Svetotekhnika [Illumination Engineering]. Moscow, 1990, no. 10, pp. 25—36.
- Solov’ev A.K. Polye trubchatye svetovody i ikh primenenie dlya estestvennogo osveshcheniya zdaniy [Hollow Tubular Light Conductors and Their Application for Natural Lighting of Buildings]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2007, no. 2, pp. 53—55.
- Stetskiy S.V., Chen Guanglong. Sozdanie kachestvennoy svetovoy sredy v pomeshcheniyakh proizvodstvennykh zdaniy dlya klimaticheskikh usloviy yugo-vostochnogo Kitaya [Development of a High-quality Illumination Environment in the Premises of Industrial Buildings in the Climatic Conditions of Southeast China]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 7, pp. 16—25.
- Aleksandrov Yu.P., Marantidi I.N., Solov’ev A.K., Stetskiy S.V. Proektirovanie svetoprozrachnykh konstruktsiy i estestvennogo osveshcheniya zdaniy [Design of Translucent Structures and Natural Lighting of Buildings]. Moscow, MISI Publ., 1984, 115 p.
- Liu Jianping. Building Physics. China Building Industry Press, 2009, 558 p.
- SNiP 23-05—95*. Estestvennoe i iskusstvennoe osveshchenie [Construction Norms and Regulations 23-05—95*. Natural and Artificial Lighting]. Moscow, Gosstroy Rossii publ., 2004, 27 p.
- SP 52.13330. Estestvennoe i iskusstvennoe osveshchenie. Aktualizirovannaya redaktsiya SNiP 23-05—95*. 2011. [Construction Rules SP 52.13330. Daylight and Artificial Lighting. Updated Version of Construction Norms and Regulations 23. 05.95*.2011. SP 52.13330.2011]. Moscow, Ministry of Regional Development, 2010, 75 p.
- Kondratenkov A.N., Solov’ev A.K., Stetskiy S.V., Khamidov K.Kh. Razrabotat’ kompleks meropriyatiy po uluchsheniyu svetovoy sredy v tselykh predpriyatiy Minlegproma Tadzhikskoy SSR s uchetom ekonomii energoresursov [Development of a Set of Actions Aimed at Improvement of the Lighting Environment at Industrial Enterprises of the Ministry of Textile Industry of the Tajik SSR with account for the Saving of Electricity]. Scientific Report compiled under Contract 102. Moscow, MISI Publ., 1986.