Error
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering

DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

The projected effect from acceptance of constructive solutions to ensure the reliability of an industrial facility

Vestnik MGSU 11/2015
  • Zolina Tat’yana Vladimirovna - State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU") Candidate of Technical Sciences, Professor, First Vice-rector, State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU"), 18 Tatishcheva str., Astrakhan, 414000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sadchikov Pavel Nikolaevich - State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU") Candidate of Technical Sciences, Associate Professor, Department of Automated Design and Modeling Systems, State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU"), 18 Tatishcheva str., Astrakhan, 414000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 68-79

The article raises the problem of increasing the reliability of an industrial building bearing the entire set of frame disturbances. One of the ways to solve it is to mount extra structural elements, previously unrecorded in the design of the object. During the study we examined some of them: installation of mechanical transverse stiffening diaphragms; increasing the rigidity of the column part above the crane; arranging connecting rods located in levels of covering in the temperature seam and crane beams. Choosing the most effective option is determined by constructive and technological features of the research object. In our case, it acts as a one-storey industrial building of hull workshop of Astrakhan maritime shipyard, equipped with overhead cranes. Using this example the calculations, which were carried out, allow estimating the effect from acceptance of constructive solutions for installation of reinforced concrete diaphragms of stiffness at the edges of framework and increase the rigidity of the column part above the crane. During the study four options are considered for calculation scheme using wall panels. These should include representation of the device: as a solid wall; in two columns wide; for large aperture sizes; at the low altitude of the end of the opening. We have presented a comparative analysis of the results before and after the introduction of the corresponding elements in the calculating model of the research object. In the accepted system of constructive measures disc coating with high horizontal rigidity distributes the load on the front diaphragm. Increasing the stiffness of above the tower crane column part gives an additional effect, as an overhead crane is located closer to the cover and in case of the column of more developed section in the above the crane area, it passes the covering greater effort. In its turn, it prevents the transverse displacement and rotation, involving the entire framework into operation. The introduction of these measures contributes to: equal declining of displacements of stresses loads from the action of the nodal points of the frame, both in the level of brake beams and in the surface level; increasing the period of achieving the object’s maximal allowable condition and an extended period of its faultless operation.

DOI: 10.22227/1997-0935.2015.11.68-79

References
  1. Gordeev V.N., Lantukh-Lyashchenko A.I., Pashinskiy V.A., Perel’muter A.V., Pichugin S.F. Nagruzki i vozdeystviya na zdaniya i sooruzheniya [Loads and Effects on Buildings and Structures]. Moscow, ASV Publ., 2007, 482 p. (In Russian)
  2. Gordeev V.N., Lantukh-Lyashchenko A.I., Pashinskiy V.A., Perel’muter A.V., Pichugin S.F. Nagruzki i vozdeystviya na zdaniya i sooruzheniya [Loads and Effects on Buildings and Structures]. Moscow, 3rd edition, revised. ASV Publ., 2011, 528 p. (In Russian)
  3. Bolotin V.V. Stochastic Models of Fracture with Applications to the Reliability Theory. Structural Safety and Reliability. Amsterdam, Oxford, New York, Elsevier, 1981, pp. 31—56.
  4. Bolotin V.V. Prognozirovanie resursa mashin i konstruktsiy [Resource Forecast of Machines and Structures]. Moscow, Mashinostroenie Publ., 1984, 312 p. (In Russian)
  5. Tamrazyan A.G. Otsenka riska i nadezhnosti konstruktsiy i klyuchevykh elementov —neobkhodimoe uslovie bezopasnosti zdaniy i sooruzheniy [Assessment of Risk and Reliability of Structures and Key Elements — A Necessary Condition for Safety of Buildings and Structures]. Vestnik TsNIISK im. V.A. Kucherenko «Issledovaniya po teorii sooruzheniy» [Proceedings of Central Research Institute of Building Structures named after V.A. Kucherenko “Investigations on Theory of Structures]. Moscow, TsNIISK Publ., 2009, no. 1, pp. 160—171. (In Russian)
  6. Zolina T.V., Sapozhnikov A.I. Patent 2401364 RF, MPK E04V1/00. Konstruktivnye sredstva uvelicheniya prostranstvennoy zhestkosti odnoetazhnykh promyshlennykh zdaniy s mostovymi kranami [Russian Patent 2401364 RF, MPK E04V1/00. Structural Means of Increasing the Space Rigidity of One-Storey Industrial Buildings with Bridge Cranes]. Patent holder AISI. Notice no. 2008130209/03; appl. 21.07.2008; publ. 10.10.2010, bulletin no. 28. 7 p. (In Russian)
  7. Dobshits L.M., Fedorov V.S. Povyshenie prochnosti i dolgovechnosti stroitel’nykh konstruktsiy [Raising Stability and Reliability of Building Structures]. Izvestiya Orlovskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Stroitel’stvo i transport [News of Orel State Technical University. Building and Transport]. 2007, no. 2—14, pp. 196—198. (In Russian)
  8. Tamrazyan A.G. Raschet elementov konstruktsiy pri zadannoy nadezhnosti i normal’nom raspredelenii nagruzki i nesushchey sposobnosti [Design of Structural Elements in the Event of the Preset Reliability, Regular Load and Bearing Capacity Distribution]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 10, pp. 109—115. (In Russian)
  9. Zolina T.V., Sadchikov P.N. Kontseptual’naya skhema issledovaniya napryazhenno-deformirovannogo sostoyaniya promyshlennogo zdaniya [Conceptual Scheme for Investigating the Stress-Strain State of an Industrial Building]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo [Proceedings of Volgograd State University of Architecture and Civil Engineering. Construction Series]. 2013, no. 33 (52), pp. 47—50. (In Russian)
  10. Bondarenko V.M., Fedorov V.S. Modeli v teoriyakh deformatsii i razrusheniya stroitel’nykh materialov [Models in Theories of Deformation and Fracture of Building Materials]. Academia. Arkhitektura i stroitel’stvo [Academia. Architecture and Construction]. 2013, no. 2, pp. 103—105. (In Russian)
  11. Klyueva N.V., Tamrazyan A.G. Osnovopolagayushchie svoystva konstruktivnykh sistem, ponizhayushchikh risk otkaza elementov zdaniya [Fundamental Features of Structural Systems Decreasing the Risk of Structural Failures]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta [News of Southwest State University]. 2012, no. 5—2 (44), pp. 126—131.
  12. Zolina T.V., Sadchikov P.N. Revisiting the Reliability Assessment of Frame Constructions of Industrial Building. Applied Mechanics and Materials. 2015, vol. 752—753, pp. 1218—1223. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.752-753.1218.
  13. Zolina T.V., Sadchikov P.N. Avtomatizirovannaya sistema rascheta promyshlennogo zdaniya na kranovye i seysmicheskie nagruzki [Automated System of Calculating Crane and Seismic Loads of Industrial Buildings]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2012, no. 8, pp. 14—16. (In Russian)
  14. Rayzer V.D. Teoriya nadezhnosti v stroitel’nom proektirovanii [Reliability Theory in Construction Design]. Moscow, ASV Publ., 1998, 304 p. (In Russian)
  15. Tamrazyan A.G. Osnovnye printsipy otsenki riska pri proektirovanii zdaniy i sooruzheniy [Basic Principles of Risk Assessment in Structural Engineering]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 2—1, pp. 21—27. (In Russian)
  16. Klyueva N.V., Bukhtiyarova A.S., Androsova N.B. K analizu issledovaniy zhivuchesti konstruktivnykh sistem pri zaproektnykh vozdeystviyakh [On the Survivability Analysis of Structural Systems in Case of Influences Beyond Design]. Stroitel’stvo i rekonstruktsiya [Construction and Reconstruction]. 2009, no. 4—24, pp. 15—21. (In Russian)
  17. Travush V.I., Kolchunov V.I., Klyueva N.V. Nekotorye napravleniya razvitiya teorii zhivuchesti konstruktivnykh sistem zdaniy i sooruzheniy [Some Development Directions of Survivability Theory of Structurel Systems of Buildings and Structures]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2015, no. 3, pp. 4—11. (In Russian)
  18. Tamrazyan A.G. Otsenka obobshchennogo riska promyshlennykh ob”ektov, svyazannogo so stroitel’stvom i ekspluatatsiey [Estimation of Generalized Risk of Industrial Objects Associated with Construction and Operation]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Building Materials, Equipment, Technologies of the 21st Century]. 2011, no. 11 (154), pp. 34—35. (In Russian)
  19. Kagan P.B. Analiz pokazateley investitsionno-stroitel’nykh programm [Analysis of Investment-Building Program Indicators]. Ekonomika i predprinimatel’stvo [Economy and Entrepreneurship]. 2015, no. 6—3 (59—3), pp. 614—616. (In Russian)
  20. Korol’ E.A. Analiz sostoyaniya i tendentsiy gradostroitel’noy deyatel’nosti v realizatsii proektov rekonstruktsii i renovatsii promyshlennykh zon Moskvy [Analysis of Status and Trends of Urban Development Activities While Implementing the Projects of Reconstruction and Renovation of Industrial Zones in Moscow]. Nedvizhimost’: ekonomika, upravlenie [Real Estate: Economy, Management]. 2014, no. 1—2, pp. 48—51. (In Russian)

Download

Extending industrial objects’ life by introduction constructive measures

Vestnik MGSU 6/2015
  • Zolina Tat’yana Vladimirovna - State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU") Candidate of Technical Sciences, Professor, First Vice-rector, State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU"), 18 Tatishcheva str., Astrakhan, 414000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Tusnin Aleksandr Romanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Chair, Department of Metal Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 41-49

An accumulation of defects caused by the action of the loads both man-made and external leads to a decrease in the carrying capacity of the carcass structure during operation of industrial buildings. Most notably this problem manifests itself in the buildings equipped with crane equipment. During operation the columns and crane girders obtain significant deformation, and this entails a reduction in structural stiffness characteristics. At the same time a load factor is enhanced when using heavier equipment. Therefore, the main purpose of this study is to identify the opportunities to ensure the reliability required for an industrial building equipped with overhead cranes. The study has developed a complex of calculation methods, the main task of which is to estimate the residual resource of a specific period of technical system operation, taking into account the random nature of a whole set of disturbances. The analysis of the results obtained by the consistent implementation of these techniques allows tracking the dynamics of changes in the stress-strain state of load-bearing structures of industrial objects in operation.In order to solve the problem of providing rigidity frames and improve the reliability of their safe operation the authors propose constructive measures to slow the rate recorded in the calculation of the bearing capacity loss of the system. For this aim we suggest setting the end face transverse stiffening diaphragms, increasing the rigidity of the column above the crane, arranging some connecting rods in the temperature seam, located in the levels of coating and under crane beams. These measures should be used together, which allows achieving a significant effect in providing transverse rigidity. The coating disk with a sufficiently high horizontal rigidity is able to transfer a portion of the load acting on the transverse frames on transverse end faces of the diaphragm. The binder rods prevent relative lateral displacement of the temperature blocks relative to each other, thereby they put the entire frame under the action of horizontal crane loads into operation. Increasing the stiffness of the column above the crane allows transferring a significant part of the effort to the coating when the bridge crane has close proximity to the coating.The proposed constructions are easy to manufacture and do not require the device holes, which weaken the structure. They can be made not only while erecting the buildings, but also in the already constructed ones by increasing the carrying capacity of the overhead cranes. In this paper we evaluate the effectiveness of the proposed measures to improve the structural rigidity of frameworks on the example of several industrial buildings. The comparative analysis of the results obtained before and after the introduction of affirmative action has shown that their arrangement reduces the horizontal displacements of the frame, in the level of crane girders, and the level of coating, with a larger effect observed in the buildings with heavy-duty overhead cranes. This reduction of displacement involves the growth of bending moments values in above the crane column part and the reduction of the magnitude moments in the under crane part. At the great height under the crane portion of the column in most buildings these changes can save generally significant amounts of steel for the framework.Thus, the proposed technical solutions are aimed not only at extending the safe operation of industrial buildings, but also have a positive effect in case of re-production associated with an increase in the lifting capacity of crane equipment, with little financial cost.

DOI: 10.22227/1997-0935.2015.6.41-49

References
  1. Gordeev V.N., Lantukh-Lyashchenko A.I., Pashinskiy V.A., Perel’muter A.V., Pichugin S.F. Nagruzki i vozdeystviya na zdaniya i sooruzheniya [Loads and Effects on Buildings and Structures]. Moscow, ASV Publ., 2007, 482 p. (In Russian)
  2. Gordeev V.N., Lantukh-Lyashchenko A.I., Pashinskiy V.A., Perel’muter A.V., Pichugin S.F. Nagruzki i vozdeystviya na zdaniya i sooruzheniya [Loads and Effects on Buildings and Structures]. Moscow, 3rd edition, ASV Publ., 2011, 528 p. (In Russian)
  3. Bolotin V.V. Stochastic Models of Fracture with Applications to the Reliability Theory. Structural Safety and Reliability. Amsterdam, Oxford, New York, Elsevier, 1981, pp. 31—56.
  4. Ditlevsen O. Reliability against Defect Generated Fracture. Journal of Structural Mechanics. 1981, vol. 9, no. 2, pp. 115—137. DOI: http://dx.doi.org/10.1080/03601218108907379.
  5. Blockley D.I. Reliability Theory — Incorporating Gross Errors. Structural Safety and Reliability. Eds. T. Moan, M. Shinozuka. Amsterdam, Oxford, New York, Elsevier, 1981, pp. 259—282.
  6. Pshenichkina V.A., Belousov A.S., Kuleshova A.N., Churakov A.A. Nadezhnost’ zdaniy kak prostranstvennykh sostavnykh sistem pri seysmicheskikh vozdeystviyakh [Reliability of Buildings as Spatial Composite Systems under Seismic Actions]. Volgograd, VolgGASU Publ., 2010, 180 p. (In Russian)
  7. Lin Y.K., Shih T.Y. Column Response to Horizontal and Vertical Earthquakes. Journal of Engineering Mechanics Division, ASCE. 1980, vol. 106, no. EM-6, pp. 1099—1109.
  8. Rayzer V.D. Teoriya nadezhnosti v stroitel’nom proektirovanii : monografiya [Reliability Theory in Construction Design: Monograph]. Moscow, ASV Publ., 1998, 304 p. (In Russian)
  9. Holicky M., Ostlund L. Vagueness of Serviceability Requirements. Proceeding of the International Conference “Design and Assessment of Building Structures”. Vol. 2. Prague, 1996, pp. 81—89.
  10. Hoef N.P. Risk and Safety Considerations at Different Project Phases. Safety, Risk and Reliability — Trends in Engineering. International Conference, Malta. 2001, pp. 1—8.
  11. Tamrazyan A.G. Otsenka riska i nadezhnosti nesushchikh konstruktsiy i klyuchevykh elementov — neobkhodimoe uslovie bezopasnosti zdaniy i sooruzheniy [Risk and Reliability Assessment of Structures and Key Elements — A Necessary Condition for the Safety of Buildings and Structures]. Vestnik NITs «Stroitel’stvo» [Proceedings of the Research Center of Construction]. 2009, no. 1, pp. 160—171. (In Russian)
  12. Tamrazyan A.G. Raschet elementov konstruktsiy pri zadannoy nadezhnosti i normal’nom raspredelenii nagruzki i nesushchey sposobnosti [Design of Structural Elements in the Event of the Preset Reliability, Regular Load and Bearing Capacity Distribution]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 10, pp. 109—115. (In Russian)
  13. Bolotin V.V. Prognozirovanie resursa mashin i konstruktsiy [Resource Projections of Machines and Structures]. Moscow, Mashinostroenie Publ., 1984, 312 p. (In Russian)
  14. Moan T., Holand I. Risk Assessment of Offshore Structures: Experience and Principles. Structural Safety and Reliability. Eds. T. Moan, M. Shinozuka. Amsterdam, Oxford, New York, Elsevier, 1981, pp. 803—820.
  15. Zolina T.V. Svodnyy algoritm rascheta promyshlennogo ob
  16. Brown C.B. Entropy Constructed Probabilities. Journal of Engineering Mechanics, ASCE. 1980, vol. 106, no. EM-4, pp. 633—640.
  17. Tichy M. On the Reliability Measure. Struct/Safety. 1988, vol. 5, pp. 227—235.
  18. Lychev A.S. Veroyatnostnye metody rascheta stroitel’nykh elementov i system [Probabilistic Methods for Design of Construction Components and Systems]. Moscow, ASV Publ., 1995, 143 p. (In Russian)
  19. Zolina T.V., Sapozhnikov A.I. Patent № 2401364 RF, MPK E04B001/00. Konstruktivnye sredstva uvelicheniya prostranstvennoy zhestkosti odnoetazhnykh promyshlennykh zdaniy s mostovymi kranami [Russian Patent no. 2401364 RF, MPK E04B001/00/ Constructive Means of Increasing the Spatial Rigidity of Single-Storey Industrial Buildings with Overhead Cranes]. № 2008130209/03 ; zayavl. 27.01.2010 ; opubl. 10.10.2010. Byul. № 28 [No. 2008130209/03 ; appl. 27.01.2010 ; publ. 10.10.2010, bulletin no. 28]. Patent holder GAOU AO VPO «AISI». 7 p. (In Russian)
  20. Zolina T.V. Obespechenie bezopasnoy ekspluatatsii promyshlennykh zdaniy s kranovym oborudovaniem [Providing Safe Operation of Industrial Buildings with Crane Equipment]. Modernizatsiya regionov Rossii: investitsii v innovatsii: materialy IV Mezhdunar. nauchno-prakticheskoy konferentsii (15 oktyabrya 2010 g.) [Modernization of the Russian Regions: Investments into Innovations. Proceedings of the 4th International Science and Practice Conference (October 15, 2010)]. Astrakhan, Sorokin R.V. Publ., 2010, pp. 16—18. (In Russian)
  21. Zolina T.V., Sadchikov P.N. Kontseptual’naya skhema issledovaniya napryazhenno-deformirovannogo sostoyaniya promyshlennogo zdaniya [Conceptual Scheme for Investigating the Stress-Strain State of an Industrial Building]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2013, no. 33 (52), pp. 47—50. (In Russian)

Download

TECHNOLOGY OF EXAMINATION OF PLASTERED SURFACES OF COMPLEX ARCHITECTURAL FORMS OF BUILDING STRUCTURES USING METHODS OF GEOMETRICAL MODELING

Vestnik MGSU 11/2012
  • Tamrazyan Ashot Georgievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, full member, Russian Engineering Academy, head of the directorate, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zholobov Aleksandr Leonidovich - Astrakhan Institute of Civil Engineering (AICI) Candidate of Technical Sciences, Professor, Department of Industrial and Civil Engineering, Astrakhan Institute of Civil Engineering (AICI), 18 Tatishcheva st., Astrakhan, 414056, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ivannikova Nadezhda Aleksandrovna - Astrakhan Institute of Civil Engineering (AICI) postgraduate student, Department of Industrial and Civil Engineering, Astrakhan Institute of Civil Engineering (AICI), 18 Tatishcheva st., Astrakhan, 414056, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 125 - 130

In the course of construction and restructuring of unique buildings and structures, any architect
faces the need to design complex surfaces that have curvilinear geometrical forms that cannot be
neglected. In turn, designs with complex curvilinear geometrical forms require higher skills in their
development, as the complexity of their design and implementation is a lot higher than that of elements
that have flat surfaces.
The value of plaster cannot be underestimated. Plaster applied to surfaces of various buildings
and structures (walls, partitions, columns) flattens the surface, shapes it up and protects it from
moisture and fire; it improves resistance to heat transfer; it reduces air permeability and improves
the soundproofi ng properties of protected designs, etc.
All pre-set parameters of plaster are to constitute the subject of random inspections, and inspection
results are to be considered in the course of acceptance of any work. The most important
though hard to control parameters of plaster include:
bond strength, thickness, moisture content and density;
flatness or its radius of curvature;
deformation properties of the plaster layer versus deformation properties of the design.
Control over compliance with the design is hard to implement as curvilinear surfaces are located
at a significant height above the ground and/or the floor level. Therefore, there is a need to develop a
non-destructive method of quality assurance of construction, restructuring and finishing works.
The solution to the problem becomes possible due to development of specific hardware and
software designated for remote though accurate identification of the surface curvature.
The authors have developed a modified range-oriented laser methodology that employs angular
segments to remotely assess the flatness of the building structure and its radius of curvature and
to determine the deviation of its value from the designed one. The software also makes it possible
to implement the quality control of the work performed over the curved surfaces coated with various
types of plaster.
The proposed solutions have been pilot tested in practice, and they are ready for use in the
building industry, namely, in construction, repair and restructuring works.

DOI: 10.22227/1997-0935.2012.11.125 - 130

References
  1. TR 182—08. Tekhnicheskie rekomendatsii po nauchno-tekhnicheskomu soprovozhdeniyu i monitoringu stroitel’stva bol’sheproletnykh, vysotnykh i drugikh unikal’nykh zdaniy i sooruzheniy. [Technical Recommendations 182—08. Technical Recommendations concerning Scientific and Technical Support and Monitoring of Construction of Large-span, High-rise and Other Unique Buildings and Structures]. Moscow, GUP «NIIMosstroy» Publ., 2008, 36 p.
  2. SNiP 3.04.01—87. Izolyatsionnye i otdelochnye pokrytiya [Construction Norms and Regulations 3.04.01—87. Insulation and Finishing Coatings]. Minstroy Rossii [Ministry of Construction of Russia]. Moscow, GUP TsPP Publ., 1996, p.
  3. Tishkin D.D. Analiz eksperimental’nykh dannykh i rezul’tatov aprobatsii mekhanizirovannoy tekhnologii oshtukaturivaniya sten pomeshcheniy [Analysis of Experimental Data and Results of Testing of Technology of Power-driven Plaster Application onto Walls of Premises]. Vestnik grazhdanskikh inzhenerov [Bulletin of Civil Engineers]. 2011, no. 1, pp. 91—97.
  4. Ivannikova N.A., Zholobova O.A. Problema obespecheniya zadannogo profi lya krivolineynykh poverkhnostey trudnodostupnykh stroitel’nykh konstruktsiy [The Problem of Compliance with the Preset Pattern of Curvilinear Surfaces of Hard-to-access Structural Elements]. Materials of Scientific and Practical Conference. Stroitel’stvo-2012 [Construction’2012]. Rostov-on-Don, Rostov State University of Civil Engineering, 2012, pp. 137—138.
  5. GOST 26433.2—94. Sistema obespecheniya tochnosti geometricheskikh parametrov v stroitel’stve. Pravila vypolneniya izmereniy parametrov zdaniy i sooruzheniy. [System of Assurance of Accuracy of Geometrics in Building Engineering. Building and Structure Measurement Rules]. Moscow, Izd-vo standartov publ., 1996, 42 p.
  6. MDS 11-17.2004. Pravila obsledovaniya zdaniy, sooruzheniy i kompleksov bogosluzhebnogo I vspomogatel’nogo naznacheniya [Rules of Inspection of Buildings, Structures, Liturgic and Supplementary Facilities]. Moscow, 2005, 48 p.
  7. Rodzhers D., Adams Dzh. Matematicheskie osnovy mashinnoy grafiki [Mathematical Fundamentals of Computer Graphics]. Moscow, Mir Publ., 2001, 604 p.

Download

Results 1 - 3 of 3