Error
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering

DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

ANALYSIS OF APPROACHES TO IDENTIFICATION OF PARAMETERS OF BLAST EFFECTS

Vestnik MGSU 5/2012
  • Mkrtychev Oleg Vartanovich - Moscow State University of Civil Engineering (MSUCE) Doctor of Technical Sciences, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Dorozhinskiy Vladimir Bogdanovich - Moscow State University of Civil Engineering (MSUCE) postgraduate student, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 45 - 49

Currently, building structures are mainly analyzed through the application of simplified methods of structural dynamics. Towards this end, analysis of an equivalent static load which causes the same effects in respect of structural elements as the dynamic load, is performed. However blast effects represent galloping and extremely nonlinear processes. In this regard, analysis of a blast load is to be performed through the application of methods of nonlinear dynamics to take account of physical, geometrical and structural nonlinearities. The problem is to be solved by motion equations in the pre-set time domain.
The authors propose deterministic methods of analysis of parameters of blast effects and results of simulations generated through the employment of LS-DYNA software. Gas dynamics equations employed to solve the aforementioned problems are provided in the most convenient Eulerian formulation. The modeling of blast effects is performed in the Lagrangian - Eulerian formulation.

DOI: 10.22227/1997-0935.2012.5.45 - 49

References
  1. Orlenko L.P., Andreev S.G., Babkin A.V., Baum F.A., Imhovik N.A., Kobylkin I.F., Kolpakov V.I., Ladov S.V., Odintsov V.A., Ohitin V.N., Selivanov V.V., Soloviev V.S., Stanyukovich K.P., Chelyshev V.P., Shehter B.I. Fizika vzryva [Physics of a Blast]. Moscow, Fizmatlit Publ., 2004, vol. 2, 832 p.
  2. Rastorguev B.S., Plotnikov A.I., Khusnutdinov D.Z. Proektirovanie zdaniy i sooruzheniy pri avariynykh vzryvnykh vozdeystviyakh [Design of Buildings and Structures Exposed to Emergency Blast Effects]. Moscow, ASV Publ., 2007,152 p.
  3. Baker W.E., P.A. Cox, Westine P.S., Kulesz J.J., Strehlow. Vzryvnye yavleniya. Otsenka i posledstviya [Blasts. Assessment and Consequences]. Elsevier Scientific Publishing Company, Amsterdam — Oxford — New York, 1983.
  4. Mkrtychev O.V., Dorozhinskiy V.B. Bezopasnost’ zdaniy i sooruzheniy pri vzryvnykh vozdeystviyakh [Safety of Buildings and Structures Exposed to Blast Effects]. Vestnik NITs «Stroitel’stvo». Issledovaniya po teorii sooruzheniy [Proceedings of Construction Scientific and Research Center. Structural Theory Research], collected papers edited by I.I. Vedyakov, G.S. Vardanyan. Moscow, 2011, no. 3-4 (XXVIII), 21 p.

Download

Comparison of linear spectral and nonlinear dynamic calculation method for tie frame building structure in case of earthquakes

Vestnik MGSU 1/2016
  • Mkrtychev Oleg Vartanovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, head, Scientific Laboratory of Reliability and Seismic Resistance of Structures, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bunov Artem Anatol’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, engineer, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Dorozhinskiy Vladimir Bogdanovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Assistant Lecturer, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 57-67

An earthquake is a rapid highly nonlinear process. In effective normative documents there is a coefficient K1, which takes into account limit damage of building structures, i.e. non-linear work of building materials and structures during seismic load. Its value depends on the building constructive layout. However, because of the development of construction and new constructive solutions this coefficient should be defined according to design-basis justification. The article considers the five-storey building calculation on seismic impact by linear-spectral and direct dynamic methods. Our research shows that the coefficient K1 for this building is 0.4, which was calculated using nonlinear dynamic method. According to effective normative documents K1 is 0.25…0.3 for buildings of this type. Thus we get a lack of seismic stability of bearing structures by 1.5…2 times. In order to ensure the seismic safety of buildings and facilities, especially of unique objects, the coefficient K1 should be determined by calculations with sufficient scientific justification, particularly with the use of non-linear dynamic methods.

DOI: 10.22227/1997-0935.2016.1.57-67

References
  1. Khavroshkin O.B., Tsyplakov V.V. Nelineynaya seysmologiya: nekotorye fundamental’nye i prikladnye problemy razvitiya [Nonlinear Seismology: Some Fundamental and Applied Problems of Development]. Fundamental’nye nauki — narodnomu khozyaystvu : sbornik [Fundamental Sciences to National Economy : Collection]. Moscow, Nauka Publ., 1990, pp. 363—367. (In Russian)
  2. Polyakov S.V. Posledstviya sil’nykh zemletryaseniy [Consequences of Strong Earthquakes]. Moscow, Stroyizdat Publ., 1978, 311 p. (In Russian)
  3. Tyapin A.G. Raschet sooruzheniy na seysmicheskie vozdeystviya s uchetom vzaimodeystviya s gruntovym osnovaniem [Structural Analysis on Seismic Effects with Account for Interaction with Soil Foundation]. Moscow, ASV Publ., 2013, 399 p. (In Russian)
  4. Aptikaev F.F. Mery po snizheniyu ushcherba ot zemletryaseniy [Measures to Reduce Earthquake Damage]. Prirodnye opasnosti Rossii [Natural Hazards of Russia]. Moscow, Kruk Publ., 2000, chapter 7, pp. 165—195. (In Russian)
  5. Mkrtychev O.V. Bezopasnost’ zdaniy i sooruzheniy pri seysmicheskikh i avariynykh vozdeystviyakh [Safety of Buildings and Structures in Case of Seismic and Emergency Loads]. Moscow, MGSU Publ., 2010, 152 p. (In Russian)
  6. Bednyakov V.G., Nefedov S.S. Otsenka povrezhdaemosti vysotnykh i protyazhennykh zdaniy i sooruzheniy zheleznodorozhnogo transporta pri seysmicheskikh vozdeystviyakh [Evaluation of Seismic Damage to High and Extended Buildings and Structures of Railway Transport]. Transport: nauka, tekhnika, upravlenie [Transport: Science, Technology, Management]. 2003, no. 12, pp. 24—32. (In Russian)
  7. Radin V.P., Trifonov O.V., Chirkov V.P. Model’ mnogoetazhnogo karkasnogo zdaniya dlya raschetov na intensivnye seysmicheskie vozdeystviya [A Model of Multi-Storey Frame Buildings for Calculations on Intensive Seismic Effects]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2001, no. 1, pp. 23—26. (In Russian)
  8. Pshenichkina V.A., Zolina T.V., Drozdov V.V., Kharlanov V.L. Metodika otsenki seysmicheskoy nadezhnosti zdaniy povyshennoy etazhnosti [Methods of Estimating Seismic Reliability of High-Rise Buildings]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2011, no. 25, pp. 50—56. (In Russian)
  9. Stefanishin D.V. K voprosu otsenki i ucheta seysmicheskogo riska pri prinyatii resheniy [Assessment and Consideration of Seismic Risk in Decision-Making]. Predotvrashchenie avariy zdaniy i sooruzheniy : sbornik nauchnykh trudov [Preventing Accidents of Buildings and Structures: Collection of Scientific Works]. 10.12.2012. Available at: http://www.pamag.ru/pressa/calculation_seismic-risk. (In Russian)
  10. Simbort E.Kh.S. Metodika vybora koeffitsienta reduktsii seysmicheskikh nagruzok K1 pri zadannom urovne koeffitsienta plastichnosti m [Methodology of Selecting Seismic Loads Gear Ratio of Reduction K1 with Given Plastic Ratio µ]. Inzhenerno-stroitel’nyy zhurnal [Engineering and Construction Journal]. 2012, vol. 27, no. 1, pp. 44—52. (In Russian)
  11. Khachatryan S.O. Spektral’no-volnovaya teoriya seysmostoykosti [Spectral-Wave Theory of Seismic Stability]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Structures Safety]. 2004, no. 3, pp. 58—61. (In Russian)
  12. Chopra Anil K. Elastic Response Spectrum: A Historical Note. Earthquake Engineering and Structural Dynamics. 2007, vol. 36, no. 1, pp. 3—12. DOI: http://dx.doi.org/10.1002/eqe.609.
  13. Mkrtychev O.V., Dzhinchvelashvili G.A. Analiz ustoychivosti zdaniya pri avariynykh vozdeystviyakh [Analysis of Building Sustainability during Emergency Actions]. Nauka i tekhnika transporta [Science and Technology on Transport]. 2002, no. 2, pp. 34—41. (In Russian)
  14. Mkrtychev O.V., Yur’ev R.V. Raschet konstruktsiy na seysmicheskie vozdeystviya s ispol’zovaniem sintezirovannykh akselerogramm [Structural Analysis on Seismic Effects Using Synthesized Accelerograms]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2010, no. 6, pp. 52—54. (In Russian)
  15. Dzhinchvelashvili G.A., Mkrtychev O.V. Effektivnost’ primeneniya seysmoizoliruyushchikh opor pri stroitel’stve zdaniy i sooruzheniy [Effectiveness of Seismic Isolation Bearings during the Construction of Buildings and Structures]. Transportnoe stroitel’stvo [Transport Construction]. 2003, no. 9, pp. 15—19. (In Russian)
  16. Datta T.K. Seismic Analysis of Structures. John Wiley & Sons (Asia) Pte Ltd. 2010, 464 p.
  17. Dr. Sudhir K. Jain, Dr. C.V.R. Murty. Proposed Draft Provisions and Commentary on Indian Seismic Code IS 1893 (Part 1). Kanpur, Indian Institute of Technology Kanpur, 2002, 158 p.
  18. Guo Shu-xiang, Lü Zhen-zhou. Procedure for Computing the Possibility and Fuzzy Probability of Failure of Structures. Applied Mathematics and Mechanics. 2003, vol. 24, no. 3, pp. 338—343. DOI: http://dx.doi.org/10.1007/BF02438271.
  19. Housner G.W. The Plastic Failure of Frames during Earthquakes. Proceedings of the 2nd WCEE, Tokyo&Kyoto. Japan, 1960, vol. II, pp. 997—1012.
  20. Pintoa P.E., Giannini R., Franchin P. Seismic Reliability Analysis of Structures. Pavia, Italy, IUSS Press, 2004, 370 p.

Download

PROBABILISTIC MODELING OF EXPLOSIVE LOADING

Vestnik MGSU 11/2012
  • Mkrtychev Oleg Vartanovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, head, Scientific Laboratory of Reliability and Seismic Resistance of Structures, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Dorozhinskiy Vladimir Bogdanovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Assistant Lecturer, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 278 - 282

According to existing design standards, explosive loading represents a special type of loading.
Explosive loading is, in most cases, local in nature, although it can exceed the loads for which
buildings are designed by a dozen of times.
The analysis of terrorist attacks with explosives employed demonstrates that charges have
a great power and, consequently, a substantial shock wave pressure. Blast effects are predictable
with a certain probability. Therefore, we cannot discuss the no-failure operation of individual structures.
The estimated reliability of buildings is a more important problem. That's how we can save
lives of those people who are outside of the area impacted by an explosion.
Explosive loading is a variable random process influenced by a variety of factors, including the
charge geometry, weight, etc. A shock wave can be reflected from surfaces and objects. Reference
data concerning physical properties of models of explosives are provided in various sources. That's
why we can talk about the blast load value with some probability.
The article deals with the probability modeling of the shock wave pressure. The charge weight
is chosen as a random parameter that has a normal Gauss distribution.
Any structural design must be backed by reliable and verified calculations and mathematical
models based on advanced high-speed PCs and software. The finite element software package
ANSYS/LS-DYNA was employed to complete this research. The problem was solved in the time
domain through the employment of the fourth integration of equations of motion.
We can assess the reliability of structures and buildings if we know the parameters of random
explosive effects. Numerical simulation helps identify random explosive impacts. This problem is
relevant in connection with the construction of unique high-rise buildings and extensive sports facilities
that accommodate dozens of thousands of viewers.

DOI: 10.22227/1997-0935.2012.11.278 - 282

References
  1. Selivanov V.V. Chislennaya otsenka vliyaniya formy VV na parametry vozdushnykh udarnykh voln [Numerical Evaluation of Explosive Effects on Parameters of Air Shock Waves]. Fizika goreniya i vzryva [Combustion and Blast Physics]. 1985, vol. 21, no. 4, pp. 93—97.
  2. Adushkin V.V., Korotkov A.I. Parametry udarnoy volny vblizi ot zaryada VV pri vzryve v vozdukhe [Air Shock Wave Parameters in Proximity to an Explosive Charge, if the Blast Is Performed in the Air]. Prikladnaya mekhanika i tekhnicheskaya fi zika [Applied Mechanics and Physics]. 1961, no. 5, pp. 119—123.
  3. Orlenko L.P., Andreev S.G., Babkin A.V., Baum F.A., Imkhovik N.A., Kobylkin I.F., Kolpakov V.I., Ladov S.V., Odintsov V.A., Okhitin V.N., Selivanov V.V., Solov’ev V.S., Stanyukovich K.P., Chelyshev V.P., Shekhter B.I. Fizika vzryva [Physics of an Explosion]. Moscow, FIZMATLIT Publ., 2004, 832 p.
  4. Mkrtychev O.V. Bezopasnost’ zdaniy i sooruzheniy pri seysmicheskikh i avariynykh vozdeystviyakh [Safety of Buildings and Structures Exposed to Seismic and Accidental Loads]. Moscow, MGSU Publ., 2010, 152 ð.
  5. Mkrtychev O.V., Dorozhinskiy V.B.; Vedyakov I.I. and Vardanyan G.S., editors. Bezopasnost’ zdaniy i sooruzheniy pri vzryvnykh vozdeystviyakh [Safety of Buildings and Structures Exposed to Explosive Loads]. Vestnik NITs «Stroitel’stvo». Issledovaniya po teorii sooruzheniy [Proceedings of Research Centre for Construction. Structural Theory Research]. Collected works. Moscow, NITs «Stroitel’stvo» publ., 2011, pp. 21—34.
  6. Larcher M. Simulation of the Effects of an Air Blast Wave. JRC 41337. European Communities, 2007.
  7. Schwer L. A Brief Introduction to Coupling Load Blast Enhanced with Multi-Material ALE: the Best of Both Worlds for Air Blast Simulation. LS-DYNA Forum, Bamberg, 2010.
  8. Khristoforov B.D. Vliyanie svoystv istochnika na deystvie vzryva v vozdukhe i vode [Influence of the Blast Source Properties on Blast Effects in the Air and in the Water]. Fizika goreniya i vzryva [Combustion and Blast Physics]. 2004, vol. 40, no. 6, pp. 115—118.
  9. Gel’fand B.E., Sil’nikov M.V. Fugasnye effekt vzryvov [Fougasse Effect of Blasts]. St.Petersburg, Poligon Publ., 2002, 272 p.
  10. Rayzer V.D. Teoriya nadezhnosti v stroitel’nom proektirovanii [Theory of Reliability in Structural Design]. Moscow, ASV Publ., 1998, 304 p.
  11. Rzhanitsyn A.R. Teoriya rascheta stroitel’nykh konstruktsiy na nadezhnost’ [Theory of Reliability Analysis of Structures]. Moscow, Stroyizdat Publ., 1978, 239 p.

Download

Nonlinear calculation of reinforced concrete structures to the impact of the air shock wave

Vestnik MGSU 1/2019 Volume 14
  • Savenkov Anton Y. - АO «Atomenergoproyekt» Lead Engineer, АO «Atomenergoproyekt», 7 Bakuninskaya st., Moscow, 105005, Russian Federation.
  • Mkrtychev Oleg V. - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor of Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 33-45

Introduction. Researched methods of accounting for the nonlinear operation of reinforced concrete structures on the example of an industrial structure, when exposed to an air shock wave using modern software systems based on the finite element method. The calculation of reinforced concrete construction to the impact of an air shock wave, if no increased requirements for tightness are presented to it, in accordance with current regulatory documents, must be carried out taking into account the elastic-plastic work, crack opening in the stretched zone of concrete and plastic deformations of reinforcement are allowed. Reviewed by new coupling approach to determining the dynamic loads of a shock wave, implemented in the LS-DYNA software package, which allows to take into account the effects of a long-range explosion and wave-wrapping around a structure. Materials and methods. The study of the stress-strain state of the structures was carried out using numerical simulation. For the nonlinear equivalent-static method, a step-by-step calculation algorithm is used, with gradual accumulation and distribution of stresses, implemented in the LIRA-SAPR software package. For the nonlinear dynamic method, the Lagrangian-Eulerian formulation is used using the methods of gas dynamics in the LS-DYNA software package. Results. As a result of numerical simulation, the following was done analysis of existing methods of nonlinear calculations; analysis of the existing loads during the flow of shock waves around the structure; analysis of the forces and movements in the bearing elements, as well as pictures of the destruction of concrete and reinforcement. Conclusions. According to the results of the comparison of the two approaches, conclusions are drawn about the advantages and disadvantages of the methods. Advantages of nonlinear dynamic calculation methods are noted compared to the equivalent-static ones. Use of the combined approach to the description of the shock wave front gives a reduction in time and allows us to describe the interaction of the wave with the structure with sufficient accuracy. The findings indicate the relevance of the study and provide an opportunity to move to more reasonable computational models.

DOI: 10.22227/1997-0935.2019.1.33-45

Download

Results 1 - 4 of 4