EXPERIMENTAL RESEARCH OF THE THREE-DIMENSIONAL PERFORMANCE OF COMPOSITE STEEL AND CONCRETE STRUCTURES
Pages 53 - 60
Composite steel and concrete slabs are often used in the reconstruction of architectural monuments to replace timber elements. Insufficient awareness of the nature of the stress-strain state of
steel-concrete slabs limits their use in the construction of residential housing. This article describes the composition, geometry, reinforcement, and anchors to enable the use of concrete slabs and steel beams. The article contains photographs that illustrate the load distribution model. Methods of testing of fiber strains of concrete slabs and steel profiles, deflections of beams, shear stresses in the layers of the "steel-to-concrete" contact area that may involve slab cracking are analyzed. Dynamics of fiber deformations of concrete slabs, steel beams, and layers of the "steel-to-concrete" contact areas, deflection development patterns, initial cracking and crack development to destruction are analyzed. The author also describes the fracture behavior of the floor model. Results of experimental studies of the three-dimensional overlapping of structural elements are compared to the test data of individual composite beams. Peculiarities of the stress-strain state of composite steel and concrete slabs, graphs of strains and stresses developing in sections of middle and external steel-and-concrete beams, deflection graphs depending on the loading intensity are provided. The findings of the experimental studies of the three-dimensional performance of composite steel-and-concrete slabs are provided, as well.
DOI: 10.22227/1997-0935.2012.12.53 - 60
- Streletskiy N.N. Stalezhelezobetonnye proletnye stroeniya mostov [Composite Steel-and-Concrete Superstructures of Bridges]. Moscow, Transport Publ., 1981, 360 p.
- Salmon Ch.G. Handbook of Composite Construction Engineering. Ch. 2. Composite Steel-Concrete Construction. New York, 1982, pp. 41—79.
- Mirsayapov I.T., Zamaliev F.S., Zamaliev E.F. Eksperimental’nye issledovaniya podatlivosti kontakta sloev stalezhelezobetonnykh konstruktsiy pri malotsiklovykh nagruzheniyakh [Experimental Research of Deformability of Contact between Layers of Steel-Concrete Structures Exposed to Low-cycle Loads]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 2, vol. 2, pp. 163—168.
- Zamaliev F.S., Shaymardanov R.I. Eksperimental’nye issledovaniya stalezhelezobetonnykh konstruktsii na krupnomasshtabnykh modelyakh [Experimental Research of Composite Steel-Concrete Structures Using Large-scale Models]. Izvestiya KazGASU [Proceedings of Kazan State University of Architecture and Civil Engineering]. 2008, no. 2(10), pp. 47—52.
- Zamaliev F.S., Sagitov R.A., Khayrutdinov Sh.N. Ispytaniya fragmenta stalezhelezobetonnogo perekrytiya na staticheskie nagruzki [Testing of a Fragment of Steel-Concrete Floor to Identify Static Loading Parameters]. Izvestiya KazGASU [Proceedings of Kazan State University of Architecture and Civil Engineering]. 2010, no. 1(13), pp. 102—105.
- Zamaliev F.S., Shaymardanov R.I. Eksperimental’nye issledovaniya stalezhelezobetonnykh balok na staticheskie nagruzheniya [Experimental Research of Static Loading of Steel-Concrete Beams]. Effektivnye stroitel’nye konstruktsii: teoriya i praktika: sb. statey mezhdunar. konf. [Collection of articles of international conference «Effective Construction Designs: Theory and Practice»]. Penza, 2002, pp. 64—69.