-
Mkrtychev Oleg Vartanovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, head, Scientific Laboratory of Reliability and Seismic Resistance of Structures, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), ;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Bunov Artem Anatol'evich -
Moscow State University of Civil Engineering (MGSU)
postgraduate student, Department of Strength of Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The article regards calculation of 16-storied building with seismic isolation in the form of elastomeric bearings on two-component accelerograms with different dominant frequencies. The problem was solved in software package LS-DYNA by forth integration of motion equations according to explicit scheme. The research showed the dependence of horizontal displacements of bearing top in relation to bottom at earthquakes given by accelerograms with different spectral structure. The article analyzes the results of the work.
DOI: 10.22227/1997-0935.2014.6.63-70
References
- Popova Zh.S., Pak Hyo Sun, Shishkina A.A., Lovtsov A.D. K seysmoizolyatsii mnogoetazhnogo zdaniya rezinometallicheskimi oporami [Multistoried Building Seismic Isolation by Rubber-Metal Supports]. Dal'niy vostok: problemy razvitiya arkhitekturno-stroitel'nogo kompleksa [Far East: Problems of the Development of Architectural and Construction Complex]. 2013, no. 1, pp. 223—228.
- Mkrtychev O.V., Bunov A.A. Sravnitel'nyy analiz reaktsiy mnogoetazhnykh zhelezobetonnykh zdaniy s sistemoy seysmoizolyatsii i bez nee na seysmicheskoe vozdeystvie [Comparative Analysis of Seismic Impact on Multystoried Ferro-Concrete Buildings with Seismic Isolation System and without it]. 21 vek: fundamental'naya nauka i tekhnologiya : Materialy III Mezhdunarodnoy nauchno-prakticheskoy konferentsii [The 21-st Century: Fundamental Science and Technology: Materials of the III International Science and Practical Conference]. Moscow, 2014, vol. 3, pp. 122—126.
- Murav'ev N.P. Sovremennyy metod seysmoizolyatsii zdaniy na primere RMO [Modern Methods of Seismic Isolation of Buildings by the Example of EBP]. Dal'niy vostok: problemy razvitiya arkhitekturno-stroitel'nogo kompleksa [Far East: Problems of Development of the Architectural and Construction Complex]. 2013, no. 1, pp. 212—218.
- Rumyantsev E.V., Belugina E.A. Modelirovanie konstruktsiy zheleznodorozhnogo terminala stantsii Adler s uchetom sistemy seysmoizolyatsii [Structural Modeling of Adler Railhead Considering Seismic Isolation]. Inzhenernostroitel'nyy zhurnal [Engineering Construction Journal]. 2012, no. 1 (27), pp. 22—30.
- Kharlanov V.L. Chislennoe issledovanie seysmoizolirovannykh sistem [Numeric Research of Seismic Isolation Systems]. Internet-vestnik VolgGASU. Seriya: Stroitel’naya informatika [Internet Reporter of Volgograd State University of Architecture and Civil Engineering. Series: Computer Science in Construction]. 2008, vol. 3 (6). Available at: http://www.vestnik.vgasu.ru. Date of Access: 20.03.2014.
- Ayzenberg Ya.M., Smirnov V.I., Akbiev R.T. Metodicheskie rekomendatsii po proektirovaniyu seysmoizolyatsii s primeneniem rezinometallicheskikh opor [Recommended Practice for Seismic Isolation Design with Elastomeric Bearings]. Moscow, RASS Publ., 2008, 46 p.
- Arutyunyan A.R. Sovremennye metody seysmoizolyatsii zdaniy i sooruzheniy [Modern Methods of Buildings and Constructions Seismic Isolation]. Inzhenerno-stroitel'nyy zhurnal [Engineering Construction Journal]. 2010, no. 3(13), pp. 56—60.
- Ormonbekov T.O., Begaliev U.T., Derov A.V., Maksimov G.A., Pozdnyakov S.G. Primenenie tonkosloynykh rezinometallicheskikh opor dlya seysmozashchity zdaniy v usloviyakh territorii Kyrgyzskoy Respubliki [The Use of Thin Layer Elastomeric Bearings for Seismic Protection in Kyrgyzstan]. Bishkek, Uchkun Publ., 2005, 215 p.
- Chen W.F., Scawthorn Ch., editor. Earthquake Engineering Handbook. Hawaii University, CRC Press LLC, 2003, 1450 p.
- Bathe K.J., Wilson E.L., Numerical Methods in Finite Element Analysis, Prentice-Hall, 1976.
- Hughes N.J.R., Rister K.S., Taylor R.L. Implicit-Explicit Finite Elements in Nonlinear Transient Analysis. Comp. Meth. Appl. Mech. Eng. 1979, no. 17—18, pp. 159—182. DOI: http://dx.doi.org/10.1016/0045-7825(79)90086-0.
- Mkrtychev O.V., Bunov A.A. Sravnitel'nyy analiz raboty seysmoizolyatsii zdaniy v vide rezinometallicheskikh opor na dvukhkomponentnuyu akselerogrammu [Comparative Analysis of Seismic Isolation of Buildings on Two-Component Accelerogram]. Nauka i obrazovanie v sovremennoj konkurentnoj srede: Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Science and Education in Modern Competitive Environment: Materials of International Scientific and Practical Conference]. Ufa, RIO ICIPT Publ., 2014, vol. II, pp. 117—123.
-
Mkrtychev Oleg Vartanovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, head, Scientific Laboratory of Reliability and Seismic Resistance of Structures, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), ;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Andreev Mikhail Ivanovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Master student, Institute of Fundamental Education, engineer, Scientific Laboratory of Reliability and Seismic Resistance of Structures, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The article contains the calculation of a 80-storey high-rise building on 3-component accelerograms with different dominant frequencies. The “Akhmat Tower” belongs to the complex “Grozny-city 2” and is classified as a unique construction, its height is 400 m. During the construction unique high-rise buildings and high-rise buildings in seismic areas an additional computational studies are required, which should take into account the nonlinear nature of the design. For the case of linear instrumental-synthesized accelerograms, it is necessary to apply nonlinear dynamic methods. The studies were conducted using the software LS-DYNA, implementing the methods of direct integration of the equations of motion by the explicit scheme. The constructive scheme of the building frame is braced, the spatial stability is ensured by load-bearing interior walls, columns and hard disks, and frame metal coatings. The choice of the type and dimensions of the finite element and the step of integration is due to the ability to perform calculations in reasonable time, and to the required accuracy of calculation. For this aim the issues of convergence of the solutions on a number of settlement schemes were investigated with the terms of thickened mesh of finite elements: 0.5 m; 1 m; 2 m; 3 m. As a result of the research it was obtained that the best is to split into finite elements with a characteristic size of 2 m. The calculation of the building is made on rigid foundation. The authors used accelerograms normalized for earthquakes of 8 and 9 points on the MSK-64 scale. The destruction of the elements in the process of loading, and the interaction of the elements during their contact was taken into account, i.e. the calculation was made taking into account physical, geometrical and structural nonlinearities. The article analyzes the results of the calculation. The authors evaluated the seismic stability of the building. Possible ways to improve the seismic resistance of the building are suggested.
DOI: 10.22227/1997-0935.2016.6.25-33
References
- Dzhinchvelashvili G.A., Bulushev S.V. Kolebaniya vysotnykh zdaniy pri seysmicheskom vozdeystvii s uchetom fizicheskoy i geometricheskoy nelineynosti [Oscillations of high-rise buildings under seismic influence considering physical and geometric nonlinearity]. Stroitel’stvo: nauka i obrazovanie [Construction: Science and Education]. 2014. no. 2, paper 1. Available at: http://www.nso-journal.ru. (In Russian)
- Mkrtychev O.V., Dzhinchvelashvili G.A. Raschet zhelezobetonnogo monolitnogo zdaniya na zemletryasenie v nelineynoy postanovke [Calculation of Reinforced Concrete Monolityc Building foe Earthquakes in Nonlinear Formulation]. Sbornik dokladov Mezhdunarodnoy nauchno-metodicheskoy konferentsii, posvyashchennoy 100-letiyu so dnya rozhdeniya V.N. Baykova (g. Moskva, 4—5 aprelya 2012 g.) [Collection of Papers of International Research and Methodology Conference Dedicated to 100th Anniversary of V.N. Baykov (Moscow, April 4—5, 2012)]. Moscow, 2012, pp. 283—289. (In Russian)
- Andreeva P.I., Koval’chuk O.A. Sravnitel’nyy analiz rezul’tatov eksperimental’nykh naturnykh dinamicheskikh issledovaniy i rascheta dinamicheskikh kharakteristik vysotnogo zhilogo zdaniya [Comparative Analysis of the Results of Experimental Field Dynamic Investigations and Calculation of Dynamic Characteristics of a High-Rise Residential Building]. International Journal for Computational Civil and Structural Engineering. 2012, vol. 8, no. 4, pp. 13—18. (In Russian)
- Mkrtychev O.V., Mkrtychev A.E. Raschet bol’sheproletnykh i vysotnykh sooruzheniy na ustoychivost’ k progressiruyushchemu obrusheniyu pri seysmicheskikh i avariynykh vozdeystviyakh v nelineynoy dinamicheskoy postanovke [Stability Calculation of Large-Span High-rise Structures for Progressive Collapse in Case of Seismic Emergency Loads in Nonlinear Dynamic Formulation]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 2009, no. 4, pp. 43—49. (In Russian)
- Andreeva P.I. Sravnitel’nyy analiz metodov rascheta na seysmicheskie vozdeystviya [Comparative Analysis of Calculation Methods of Seismic Impacts]. Stroitel’stvo — formirovanie sredy zhiznedeyatel’nosti : sbornik trudov XVII Mezhdunarodnoy Mezhvuzovskoy nauchno-prakticheskoy konferentsii studentov, magistrantov, aspirantov i molodukh uchenykh (g. Moskva, 23—25 aprelya 2014 g.) [Construction — Formation of Living Environment : Collection of Works of the 17th International Interuniversity Science and Practice Conference of students, Master students, postgraduate students and young scientists (Moscow, April 23—25, 2014). Pp. 489—492. (In Russian)
- Trifonov O.V. Modelirovanie dinamicheskoy reaktsii konstruktsiy pri dvukhkomponentnykh seysmicheskikh vozdeystviyakh [Simulating the Dynamic Response of Structures in Case of Two-Component Seismic Effects]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Earthquake Engineering. Constructions Safety]. 2000, no. 1, pp. 42—45. (In Russian)
- Sanaz Rezaeian, Armen Der Kiureghian. Simulation of Synthetic Ground Motions for Specified Earthquake and Site Characteristics. Earthquake Engineering & Structural Dynamics. 2010, vol. 39, no. 10, pp. 1155—1180. DOI: http://dx.doi.org/10.1002/eqe.997.
- Soize C. Information Theory for Generation of Accelerograms Associated with Shock Response Spectra. Computer-Aided Civil and Infrastructure Engineering. 2010, vol. 25, no. 5, pp. 334—347. DOI: http://dx.doi.org/10.1111/j.1467-8667.2009.00643.x.
- Zentner I. Simulation of Non-Stationary Conditional Ground Motion Fields in the Time Domain. Georisk: Assessment and Management of Risk for Engineered Systems and Geo-hazards. 2013, vol. 7, no. 1, pp. 37—48. DOI: http://dx.doi.org/10.1080/17499518.2013.763572.
- Tamrazyan A.G., Tomilin V.A. Nesushchaya sposobnost’ konstruktsiy vysotnykh zdaniy pri lokal’nykh izmeneniyakh fiziko-mekhanicheskikh kharakteristik materialov [Bearing Capacity of High-Rise Building Structures in Case of Local Changes of Physical and Mechanical Characteristics of the Materials]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2007, no. 11, pp. 24—25. (In Russian)
- Ayzenberg Ya.M., Smirnov V.I., Akbiev R.T. Metodicheskie rekomendatsii po proektirovaniyu seysmoizolyatsii s primeneniem rezinometallicheskikh opor [Methodological recommendations on the Design of Seismic Isolation Using Metal-Rubber Supports]. Moscow, RASS Publ., 2008, 46 p. (In Russian)
- Koval’chuk O.A., Zubkov D.A., Andreeva P.I. Issledovanie effektivnosti re'zino-metallicheskikh vibroizolyatorov firmy «Vibroseysmozashchita» primenitel›no k karkasnym zdaniyam, vozvedennym vblizi tonneley metro melkogo zalozheniya [Investigation of the Efficiency of Metal-Rubber Vibration Isolators of “Vibroseysmozashchita” Company for Frame Buildings Built near the Subsurface Tunnels of Subway]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 6, pp. 335—340. (In Russian)
- Mkrtychev O.V., Bunov A.A. Sravnitel’nyy analiz reaktsiy mnogoetazhnykh zhe-lezobetonnykh zdaniy s sistemoy seysmoizolyatsii i bez nee na seysmicheskoe vozdeystvie [Comparative Analysis of the Reactions of Multistoreyed Buildings with Seismic Isolation System and without it on Seismic Effect]. 21 vek: fundamental’naya nauka i tekhnologiya : materialy III Mezhdunarodnoy nauchno-prakticheskoy konferentsii [21st Century: Fundamental Science and Technology: Materials of the 3rd International Science and Practice Conference]. Moscow, 2014, vol. 3, pp. 122—126. (In Russian)
- Rumyantsev E.V., Belugina E.A. Modelirovanie konstruktsiy zheleznodorozhnogo terminala stantsii Adler s uchetom sistemy seysmoizolyatsii [Modeling Structures of Railway Terminal of Adler Station with Account for the System of Seismic Isolation]. Inzhenerno-stroitel’nyy zhurnal [Engineering and Construction Journal]. 2012, no. 1 (27), pp. 22—30. (In Russian)
- Andreev V.I., Dzhinchvelashvili G.A., Kolesnikov A.V. Raschet zdaniy i sooruzheniy na seysmicheskie vozdeystviya s uchetom nelineynykh effektov [Calculation of Seismic Actions on Buildings and Structures with Account of Nonlinear Effects]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century]. 2012, no. 7, pp. 33—35. (In Russian)
- Dzhinchvelashvili G.A., Kolesnikov A.V., Zaalishvili V.B., Godustov I.S. Perspektivy razvitiya sistem seysmoizolyatsii sovremennykh zdaniy i sooruzheniy [Prospects of the Development of the Systems of Seismic Isolation of Modern Buildings and Structures]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Earthquake Engineering. Constructions Safety]. 2009, no. 6, pp. 27—31. (In Russian)