DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

DEPENDENCE OF SUFFOSION STABILITY OF SANDY SOILS OF VARIOUS GENESES ON THE TYPE OF FILTRATE

Vestnik MGSU 5/2012
  • Potapov Ivan Aleksandrovich - Scientific and Research Institute of Emergency Healthcare named after N.V. Sklifosovskiy engineer, Scientific and Research Institute of Emergency Healthcare named after N.V. Sklifosovskiy, ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Shimenkova Anastasiya Anatol'evna - Moscow State University of Civil Engineering (MGSU) engineer, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Potapov Aleksandr Dmitrievich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Head, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 79 - 86

Results of calculations and experimental researches of suffosion stability of sandy soils are provided in the article. The authors have assessed the prospects for the application of standard methodologies to demonstrate the need to take account of the filtrate properties in the course of projecting potential suffusion process development patterns typical for sandy soils. The principal attention must be driven to the value of the kinematic viscosity of filtered liquids. Any assessment of filtration-related interaction of the flow of liquid with sandy soils must be backed by the gradation analysis of soils and the analysis of their homogeneity, as well as the mineralogical and morphological analysis. The morphological study of sands of various geneses, performed hereunder, is based on the methodology that takes account of both the shape of sand particles and the structure of their surface.
The proposed methodology makes it possible to assess extensive sand specimen rather than separate sand particles to assure the representative sampling to assure the accuracy of the morphological analysis. The authors provide the data that cover the research of sands of various geneses demonstrating varied granulometric and mineral composition, as well as various morphological peculiarities of correlation with the filtrates that have different values of kinematic viscosity. The methodological research completed by the authors has indicated an urgent need to perform laboratory and field researches of suffosion instability of sandy soils in varied geoecological environments typical for urban lands exposed to anthropogenic pollutions.

DOI: 10.22227/1997-0935.2012.5.79 - 86

References
  1. Rekomendatsii po metodike laboratornykh ispytaniy gruntov na vodopronitsaemost’ i suffozionnuyu ustoychivost’. P 12-83 [Recommendations concerning the Methodology of Laboratory Testing of Waterpermeability and Suffosion Stability of Soils. P 12-83]. Leningrad, VNIIG [Institute Hydroproject], 1983.
  2. Spiridonov V.N. Gidravlicheskie kharakteristiki otkrytogo potoka v pronitsaemom rusle [Hydraulic Characteristics of an Open Stream in a Nontight Channel]. Moscow, Moscow Institute of Civil Engineering, 1985.
  3. Vil’ner Ya.M. Spravochnoe posobie po gidravlike, gidromashinam i gidroprivodam [Handbook of Hydraulics, Hydraulic Machines and Hydraulic Drivers]. Moscow, Mashizdat Publ., 1989.
  4. GOST 25100—95. Grunty. Klassifikatsiya. [All-Russian State Standard 25100—95. Soils. Classification]. Moscow, Gosstroy Publ., 1996.
  5. Potapov A.D. Morfologicheskoe izuchenie peskov razlichnogo genezisa v inzhenernogeologicheskikh tselyakh [Morphological Research of Sands of Various Geneses for Engineering Geology Purposes]. Moscow, PNIIIS [Production, Scientific and Research Institute of Engineering Surveying in Construction], 1982.

Download

The influenceof nanoparticles orientation on water permeability through nanocomposites

Vestnik MGSU 7/2015
  • Matseevich Tat’yana Anatol’evna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Higher Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Popova Marina Nikolaevna - Moscow State University of Civil Engineering (MGSU) Doctor of Chemical Sciences, Associate Professor, Department of Composite Materials Technology and Applied Chemistry, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Afanas’ev Egor Sergeevich - A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Candidate of Chemical Sciences, senior research worker, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 28 Vavilova str., V-334, GSP-1, Moscow, 119991, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Askadskiy Andrey Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Chemical Sciences, Professor, Department of Composite Materials Technology and Applied Chemistry, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 79-86

The problem of nanocomposites’ permeability regulation has been attracting the interest of scientists throughout the current decades. The works were dedicated to different models of permeability of the composites containing impermeable layered fillers in polymer matrix. It was shown that polymer films with parallel laid flat impermeable particles of the filler may have the permeability twice or thrice less than the films of the same size, but without a filler. The authors analyzed the influence of nanoparticles on water permeability through nanocomposites obtained on the basis of polymers and flat nanoparticles. The offered correlations take into account the chemical composition of the polymer and nanoparticles, as well as the surface structure in case of chemical modification. The shape of flat particles (tablet, brick, sphere) is also taken into account. The permeability is mostly influenced by nanoparticles concentration, their shape and size orientation angle.

DOI: 10.22227/1997-0935.2015.7.79-86

References
  1. McGrath J.E., Park H.B., Freeman B.D. Chlorine Resistant Desalination Membranes Based on Directly Sulfonated Poly(Arylene Ether Sulfone) Copolymers. US Patent Application 11/655319 (2007).
  2. Park H.B., Freeman B.D., Zhang Z.-B., Sankir M., McGrath J.E. Highly Chlorine-Tolerant Polymers for Desalination. Angewandte Chemie. 2008, vol. 47 (32), pp. 6019—6024. DOI: http://dx.doi.org/10.1002/anie.200800454.
  3. Xie W., Park H.B., Cook J., Lee C.H., Byun G., Freeman B.D., McGrath J.E. Advances in Membrane Materials: Desalination Membranes Based on Directly Copolymerized Disulfonated Poly (Arylene Ether Sulfone) Random Copolymers. Water Science and Technology. 2010, vol. 61 (3), pp. 619—624. DOI: http://dx.doi.org/10.2166/wst.2010.883.
  4. Knoell T. Municipal Wastewater. Chlorine’s Impact on the Performance and Properties of Polyamide Membranes. Ultrapure Water. 2006, no. 23, pp. 24—31.
  5. Geise G.M., Lee H.-S., Miller D.J., Freeman B.D., McGrath J.E., Paul D.R. Water Purification by Membranes: The Role of Polymer Science. Polymer Science, Ser. B. 2010, vol. 48, no. 15, pp. 1685—1718. DOI: http://dx.doi.org/10.1002/polb.22037.
  6. Geise G.M., Park H.B., Sagle A.C., Freeman B.D., McGrath J.E. Water Permeability and Water/Salt Selectivity Tradeoff in Polymers for Desalination. Journal of Membrane Science. 2011, vol. 369, no. 1—2, pp. 130—138. DOI: http://dx.doi.org/10.1016/j.memsci.2010.11.054.
  7. Greener J., Ng K.C., Vaeth K.M., Smith T.M. Moisture Permeability Through Multilayered Barrier Films as Applied to Flexible OLED Display. Journal of Applied Polymer Science. 2007, vol. 106 (5), pp. 3534—3542. DOI: http://dx.doi.org/10.1002/app.26863
  8. Genov Iv., Ganev R., Gospodinova N., Glavchev Iv. Water-Vapour Permeability of Polymer Films. Journal of the University of Chemical Technology and Metallurgy. 2010, vol. 45, no. 2, pp. 213—214.
  9. Islam M.A., Buschatz H. Assessment of Thickness-Dependent Gas Permeability of Polymer Membranes. Indian Journal of Chemical Technology. January 2005, vol. 12, pp. 88—92.
  10. Islam M.A., Buschatz H., Paul D. Non-Equilibrium Surface Reactions-A Factor in Determining Steady State Diffusion Flux. J. Membr. Sci. 2002, vol. 204, no. 1-2, pp. 379—384. DOI: http://dx.doi.org/10.1016/S0376-7388(02)00064-9.
  11. Islam M.A., Buschatz H. Gas Permeation through a Glassy Polymer Membrane: Chemical Potential Gradient or Dual Mobility Mode. Chem. Eng. Sci. 2002, vol. 57, no. 11, pp. 2089—2099. DOI: http://dx.doi.org/10.1016/S0009-2509(02)00068-4.
  12. Gennadios A., Weller C.L., Gooding C.H. On the Measurement of Water Vapor Transmission Rate of Hydrophilic Edible Films. J. Food Eng. 1994, vol. 21, no. 4, pp. 395—409. DOI: http://dx.doi.org/10.1016/0260-8774(94)90062-0.
  13. Morillon V., Debeaufort F., Blond G., Capelle M., Voilley A. Factors Affecting the Moisture Permeability of Lipid-Based Edible Films: A Review. Crit. Rev. Food Sci. Nutr. 2002, vol. 42 (1), pp. 67—89. DOI: http://dx.doi.org/10.1080/10408690290825466.
  14. Chen Y., Li Y. A New Model for Predicting Moisture Uptake by Packaged Solid Pharmaceuticals. Int. J. Pharm. 2003, vol. 255 (1-2), pp. 217—225. DOI: http://dx.doi.org/10.1016/S0378-5173(03)00089-9.
  15. Mizrahi S., Karel M. Accelerated Stability Test of Moisture Sensitive Products in Permeable Packages at High Rates of Moisture Gain and Elevated Temperatures. J. Food Sci. 1977, vol. 42, no. 6, pp. 1575—1578. DOI: http://dx.doi.org/10.1111/j.1365-2621.1977.tb08429.x.
  16. Del Nobile M.A., Buonocore G.G., Limbo S., Fava P. Shelf Life Prediction of Cereal-Based Dry Foods Packed in Moisture-Sensitive Films. Food Eng. Phys. Prop. 2003, vol. 68, no. 4, pp. 1292—1300. DOI: http://dx.doi.org/10.1111/j.1365-2621.2003.tb09642.x

Download

Results 1 - 2 of 2