PERSONALITIES. INFORMATION

Concrete and reinforced concrete - glance at future

Vestnik MGSU 4/2014
  • Tamrazyan Ashot Georgievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, full member, Russian Engineering Academy, head of the directorate, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 181-189

In the article the information on the upcoming international conference on concrete and reinforced concrete is offered. The aim of the conference is stated, as well as the main points of the program, composition of the conference, the papers’ subject is disclosed. The author highlights the effect of reinforced concrete invention on the world civilization development. According to the author’s point of view, today reinforced concrete became one of the most evident means of the world development.

DOI: 10.22227/1997-0935.2014.4.181-189

Download

Russian geologist I.V. Popov - a founder of the department of engineering geology of Moscow state university of civil engineering

Vestnik MGSU 10/2014
  • Platov Nikolay Aleksandrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Geologo-Mineralogical Sciences, Professor, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 188-01-02; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Potapov Aleksandr Dmitrievich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Chair, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), .
  • Lavrusevich Andrey Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Geologo-Mineralogical Sciences, Professor, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 219-223

DOI: 10.22227/1997-0935.2014.10.219-223

Download

FAСADE SYSTEMS: DURABILITY, UTILITY AND BEAUTY

Vestnik MGSU 10/2015
  • Zhukov Aleksey Dmitrievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Composite Materials Technology and Applied Chemistry, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, Russian Federation, 129337.
  • Bobrova Ekaterina Yur’evna - Moscow State University of Civil Engineering (National Research University) (MGSU); Higher School of Economics (HSE) director, Moscow State University of Civil Engineering (National Research University) (MGSU); Higher School of Economics (HSE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; 57-1 Trifonovskaya str., Moscow, 129272, Russian Federation.
  • Karpova Anastasiya Olegovna - Moscow State University of Civil Engineering (National Research University) (MGSU); Public stock company "Central Scientific-Research and Experimental-Design Institute of Industrial Buildings and Structures" Master student, Institute of Construction and Architecture; engineer, Moscow State University of Civil Engineering (National Research University) (MGSU); Public stock company "Central Scientific-Research and Experimental-Design Institute of Industrial Buildings and Structures", 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; 46-2, Dmitrovskoe shosse, Moscow, 127238, Russian Federation.

Pages 201-209

Thermal insulation of facades provides: improving the comfort of residents, reducing energy consumption for heating the building, reducing CO2 emissions by 5 times, reduction of energy intensity of gross product, increasing the durability of building envelopes. The article observes the results of the conference Facades of Russia+ 2015. The prospects for the facades’ market in all of its major business segments: translucent facades, ventilated facades and plaster facades with insulation, fire fronts were discussed at the second congress of the faсade’s market Facades of Russia+ 2015. The speakers focused on the analysis of the faсade market, faсade technologies, fire protection of faсade systems, hinged ventilated facades, faсade heat-insulating composition faсade systems, curtain walls. The congress, organized by the Congress Bureau ODF Events, was attended by the leading experts of the faсade’s market from branch institutes, higher educational institutions, supervisory bodies, heads of factories of facade materials and installation companies. The results of the market investigation justify the irretionality of the forecasts on faсade market decline and critical condition of the branch.

DOI: 10.22227/1997-0935.2015.10.201-209

References
  1. Rumyantsev B.M., Zhukov A.D., Smirnova T.Yu. Teploprovodnost’ vysokoporistykh materialov [Thermal Conductivity of Highly Porous Materials]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 3, pp. 108—114. (In Russian)
  2. Zhukov A.D., Orlova A.M., Naumova T.A., Talalina I.Yu., Mayorova A.A. Sistemy izolyatsii stroitel’nykh konstruktsiy [Systems of Insulation for Building Structures]. Nauchnoe obozrenie [Scientific Review]. 2015, no. 7, pp. 218—221. (In Russian)
  3. Andrianov R.A., Orlova A.M., Ashirbekova S.B., Aleksandrova O.V. Zashchitno-pokrovnye materialy na osnove fenoloformal’degidnykh oligomerov [Protective-Coating Materials on the Basis of Phenol-Formaldehyde Oligomers]. Konstruktsii iz kompozitsionnykh materialov [Composite Materials Constructions]. 2006, no. 2, pp. 5—13. (In Russian)
  4. Treskova N.V., Pushkin A.S. Sovremennye stenovye materialy i izdeliya [Modern Wall Materials and Products]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction materials, the equipment, technologies of XXI century]. 2013, no. 11 (178), pp. 32—35. (In Russian)
  5. Oreshkin D.V., Semenov V.S. Sovremennye materialy i sistemy v stroitel’stve — perspektivnoe napravlenie obucheniya studentov stroitel’nykh spetsial’nostey [Modern Materials and Systems in the Construction — the Perspective Direction of Teaching the Construction Specialties]. Stroitel’nye materialy [Construction Materials]. 2014, no. 7, pp. 92—94. (In Russian)
  6. Zhukov A.D., Chugunkov A.B. Lokal’naya analiticheskaya optimizatsiya tekhnologicheskikh protsessov [Local Analytical Optimization of Technological Processes]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 1—2, pp. 273—278. (In Russian)
  7. Zhukov A.D., Bessonov I.V., Sapelin A.N., Naumova N.V., Chkunin A.S. Composite Wall Material. Italian Science Review. February 2014, no. 2 (11), pp. 155—157.
  8. Zhukov A.D., Smirnova T.V., Zelenshchikov D.B., Khimich A.O. Thermal Treatment of the Mineral Wool Mat. Advanced Materials Research (Switzerland). 2013, vols. 838—841, pp. 196—200. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.838-841.196.
  9. Bobrov Ju.L. Uj, közetgyapotbol készü lthöszigetelö anyagok a modern épitkezésben Budapesti Müszaki Egyetem (forditásoroszról, áttekintö információ. harmadik, kiadás, a Szovjetunióállami Épitési Bizottsága Tájékoztató Intézete, M. 1981). Budapest, 1984, pp. 45—49.
  10. Lienhard IV J.H., Lienhard V J.H. A Heat Transfer Textbook. 3rd ed. Cambridge, MA, Phlogiston Press, 2003, 749 p.
  11. Bliūdžius R., Samajauskas R. Peculiarities of Determining Thermal Conductivity Coefficient of Low Density Fibrous Materials. Materials Science (Medžiagotyra). 2001, vol. 7, no. 4, pp. 280—284.
  12. Gorshkov A.S., Rymkevich P.P., Vatin N.I. Ekonomicheskaya effektivnost’ investitsiy v energosberezhenie [Cost-effectiveness of Investments in Energy Efficiency]. Inzhenernye sistemy. AVOK — Severo-Zapad [Engineering Systems. AVOK — Northwest]. 2014, no. 3, pp. 32—36. (In Russian)
  13. Romanova A.A., Rymkevich P.P., Gorshkov A.S. Metodika rascheta prognoziruemykh srokov okupaemosti energosberegayushchikh meropriyatiy po utepleniyu zdaniy [Methods of Calculating the Projected Payback Period of Energy-Saving Measures for Thermal Insulation of Buildings]. Tekhniko-tekhnologicheskie problemy servisa [Technical and Technological Problems of Service]. 2014, no. 4 (30), pp. 68—74. (In Russian)
  14. Nemova D.V., Vatin N.I., Gorshkov A.S. Tekhniko-ekonomicheskoe obosnovanie meropriyatiy po utepleniyu ograzhdayushchikh konstruktsiy chastnogo zhilogo doma [Feasibility Study of the Measures on Warming Enveloping Structures of a Private House]. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy [Construction of Unique Buildings and Structures]. 2014, no. 8 (23), pp. 93—115. (In Russian)

Download

Results 1 - 4 of 4