Error
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering

ENGINEERING RESEARCH AND EXAMINATION OF BUILDINGS. SPECIAL-PURPOSE CONSTRUCTION

Dynamic monitoring of engineering structures as a key element of its technical security

Vestnik MGSU 3/2014
  • Patrikeev Aleksandr Vladimirovich - Centre for Diagnostics and Monitoring (TsDM) Candidate of Technical Sciences, Director, Monitoring Department, Centre for Diagnostics and Monitoring (TsDM), 95A Varshavskoye shosse, Moscow, 117556, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 133-140

On an example of a complex engineering structure with aerodynamically unfavorable constructive form, equipped with mechanisms dampers, the results of long-term observations of the oscillation frequency under the influence of wind loads were reviewed. The experimental dependence of the first tone oscillation frequency on time for this structure is shown. The hypothesis on the causes of frequency oscillations change in engineering structures in time is proposed. The experimental data confirms this hypothesis. The results of a comparison of the experimental data for long-term observations with the oscillation frequency in accordance with the safety criteria of GOST 31937-2011 “Buildings and Constructions. Rules of inspection and monitoring of the technical condition” are shown. It has been shown that the results of comparison indicate technical safety of the whole object. It is offered to use dynamic monitoring systems for technically complex heavy-duty engineering structures for early detection of the transition beginning of the control object to the limited functional or emergency condition.

DOI: 10.22227/1997-0935.2014.3.133-140

References
  1. Shablinskiy G.E. Monitoring unikal'nykh vysotnykh zdaniy i sooruzheniy na dinamicheskie i seysmicheskie vozdeystviya [Monitoring of Unique High-rise Buildings and Structures for the Dynamic and Seismic Effects]. Moscow, ASV Publ., 2013, 328 p.
  2. Novak Yu.V., Vinogradova O.A., Solomentsev M.E. Dinamicheskie metody ispytaniya mostovykh konstruktsiy i unikal'nykh sooruzheniy[Dynamic Test Methods of Bridge Structures and Unique Structures]. Transportnoe stroitel'stvo [Transport Construction]. 2009, no. 7, pp. 2—4.
  3. Metodicheskie rekomendatsii po vibrodiagnostike avtodorozhnykh mostov [Guidelines for Highway Bridges Vibrodiagnostics]. Moscow, Rosavtodor Publ., 2001, 25 p.
  4. Kapustyan N.K. Seysmobezopasnost': obobshchenie opyta monitoringa zdaniy i sooruzheniy [Seismic Safety: Summarizing the Experience of Monitoring of Buildings and Structures]. Proektirovanie i inzhenernye izyskaniya [Design and Engineering Surveys]. 2012, no. 4 (18). Available at: http://www.acdjournal.ru/Priz%2018/3/p.html.
  5. Monitoring sostoyaniya zdaniy [Monitoring of Building Condition]. Tsentr tekhnicheskikh obsledovaniy OOO «IST». [Technical Survey Center LLC «IST»]. Novosibirsk, 2012. Available at: http://toist.ru. Date of access: 13.12.13.
  6. Patrikeev A.V., Salatov E.K., Spiridonov V.P. Dinamicheskiy monitoring zdaniy i sooruzheniy kak odin iz kriteriev obespecheniya bezopasnoy ekspluatatsii [Dynamic Monitoring of Buildings and Structures as One of the Criteria for the Safe Exploitation]. Tekhnologicheskie problemy prochnosti: Materialy 18 Mezhdunarodnogo seminara [Collected Works of the 18th International Seminar «Technological Problems of Strength»]. Podol'sk, 2011, pp. 78—81.
  7. Ostroumov B.V. Uvelichenie obshchego dempfi rovaniya vysotnykh sooruzheniy pri ustanovke na nikh dinamicheskikh gasiteley kolebaniy s zatukhaniem [Increase of the Total Damping of High-rise Buildings when Installing Dynamic Vibration Absorbers with Damping]. Montazhnye i spetsial'nye raboty v stroitel'stve [Mounting and Special Works in Construction]. 2005, no. 9, pp. 22—24.
  8. Patrikeev A.V. Povyshenie urovnya bezopasnosti inzhenernykh sooruzheniy na primere Glavnogo monumenta pamyatnika Pobedy na Poklonnoy gore v g. Moskve [Improvement of Safety of Engineering Structures Exemplifi ed by the Main Monument of the Victory Memorial on Poklonnaya Hill in the City of Moscow]. Problemy upravleniya kachestvom gorodskoy sredy: 11 nauchno-prakticheskaya konferentsiya. 27—28.09.2007 [Problems of the Urban Environment Quality Management. Collected works of the 11th Scientific and Practical Conference «Problems of Quality Management of the Urban Environment»]. Moscow, RAGS Publ., 2007, p. 82.
  9. Patrikeev A.V., Salatov E.K. Osnovy metodiki dinamicheskogo monitoringa deformacionnykh kharakteristik zdaniy i soorzhjeniy [Fundamentals of the Method of Dynamic Monitoring of Deformation Characteristics of Buildings and Structures]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 1, pp. 133—138.

Download

Research into mechanical properties and structure of metals as part of restored construction facilities

Vestnik MGSU 11/2014
  • Gustov Yuriy Ivanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Machinery, Machine Elements and Process Metallurgy, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-94-95; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pyatnitskiy Aleksandr Arkad’evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Building Design and Urban Planning, head, Research and Production Laboratory "Design and Construction", Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Makhov Igor’ Olegovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Building Design and Urban Planning, junior research worker, Research and Production Laboratory "Design and Construction", Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 90-97

The article represents a summarized methodology of the research into small-size pilot metal samples of restored construction facilities. In the article, the co-authors demonstrate an option that provides for the analytical identification of standard characteristic values of mechanical properties, based on initial hardness HRB and conversion of hardness values using the Brinell test. Towards this end, analytical dependence of HB hardness on HRB and HRC is proposed. The numerical identification of the temporary resistance to tensile stress σ
в required the pre-setting of the value of the average coefficient of relative elongation. This average coefficient was employed to identify the values of relative elongation and contraction, as well as the yield value of the metal. Standard plasticity and strength values were employed to compile an equation for complex criterion C. This criterion was employed to identify the value of relative uniform elongation and transverse contraction, and both were employed to assess the resistance to tensile stress and fatigue. The optical microscopy method was used to identify the pilot sample of the metal as structural carbon steel having grade C15. Its strength analysis based on the properties of its structural components has proven the identity between the sample metal and the aforementioned steel grade. The method proposed by the co-authors helps to identify the metals of restructured construction facilities on the basis of small-size samples to avoid the collapse of metal structures.

DOI: 10.22227/1997-0935.2014.11.90-97

References
  1. Bessonov G.B. Issledovanie deformatsiy, raschet nesushchey sposobnosti i konstruktivnoe ukreplenie drevnikh raspornykh system [Deformation Investigation, Bearing Capacity Calculation and Constructional Strengthening of Ancient Trust Systems]. Moscow, Soyuzrestavratsiya Publ., 1989, 119 p. (In Russian).
  2. Gudkov A.A., Slavskiy Yu.I. Metody izmereniya tverdosti metallov i splavov [Calculation Methods for Hardness of Metals and Alloys]. Moscow, Metallurgiya Publ., 1982, 168 p. (In Russian).
  3. Klesnil M., Lukas P. Fatigue of Metallic Materials. Prague, Academia Publ., 1980, 240 p.
  4. Callister W.D., Rethwich D.G. Fundamentals of Materials Science and Engineering. An Integrated Approach. John Wiley Sons. Ins., 2008, 896 p.
  5. Tylkin M.A. Spravochnik termista remontnoy sluzhby [Guide of the Heat-treater of Maintenance Service. Moscow, Metallurgiya Publ., 1981, 648 p.
  6. Radzimovsky E.I. Stress Distribution and Strength Condition of Two Rolling Cylinders Pressed Together. University of Illinois Engineering Experiment Station Bulletin Series No. 408, 1953, vol. 50, no. 44, 40 p.
  7. Dubov A., Kolokolnikov S. Quality Assurance of Welded Joints In Power Engineering by the Metal Magnetic Memory Method. Safety and Reliability of Welded Components in Energy and Processing Industry : Proceeding of the JJW International Conference, Graz, Austria. 2008, pp. 709—714.
  8. Kolokol’nikov S.M., Dubov A.A. Opredelenie mekhanicheskikh svoystv metalla svarnykh shvov po parametram tverdosti v zonakh kontsentratsii napryazheniy, vyyavlennykh metodom magnitnoy pamyati metalla [Determination of the Mechanical Properties of Welds Metals on Hardness Parameters in Stress Concentration Areas Detected by Metal Magnetic Memory Method]. Diagnostika oborudovaniya i konstruktsiy s ispol’zovaniem magnitnoy pamyati metallov : sbornik dokladov VII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Diagnostics of Equipment and Structures with Application of Metal Magnetic Memory : Collection of the Papers of the 7th International Science and Practice Conference]. Moscow, OOO «Energodiagnostika» Publ., 2013, pp. 66—76. (In Russian).
  9. Gustov Yu.I., Allattouf H. Issledovanie vzaimosvyazi koeffitsientov plastichnosti i predela tekuchesti staley standartnykh kategoriy prochnosti [Study of Interdependence between Ductility Factors and Yield Limits for Steels of Standard Strength Grades]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 7, pp. 22—26. (In Russian).
  10. Gustov Yu.I., Voronina I.V., Kurtenok N.P., Allattouf H. Sootnosheniya chisel tverdosti v raschetakh na staticheskuyu i tsiklicheskuyu prochnost' konstruktsionnykh staley [Ratios of Hardness Numbers in Calculations of Static and Cyclical Strength of Construction Types of Steels]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 1, pp. 72—78. (In Russian).
  11. Allattouf H. Otsenka rabotosposobnosti truboprovodnykh staley po energeticheskim kriteriyam [Performance Evaluation of Pipe Steels According to Energetic Criteria]. Mekhanizatsiya stroitel’stva [Automation of Construction]. 2014, no. 6, pp. 46—48. (In Russian).
  12. Gustov Yu.I., Gustov D.Yu. Issledovanie vzaimosvyazi mekhanicheskikh svoystv metallicheskikh materialov [Interrelation Investigation of Mechanical Properties of Metal Materials]. Teoreticheskie osnovy stroitel’stva : doklad VII pol’sko-rossiyskogo seminara [Theoretical Basis of Construction : Reports of the 7th Polish-Russian Workshop]. Moscow, ASV Publ., 1998, pp. 225—228. (In Russian).
  13. Sansalone M., Jaeger B. Applications of the Impact — Echo Method for Detecting Flaws in Highway Bridges. Structural Materials Technology. An NTD Conference. San Diego, California, 1996, pp. 204—210.
  14. Ivanova V.S., Balankin A.S., Bunin I.Zh., Oksogoev A.A. Sinergetika i fraktaly v materialovedenii [Synergy and Fractals in Materials Science]. Moscow, Nauka Publ., 1994, 383 p. (In Russian).
  15. Fridman Ya.B. Mekhanicheskie svoystva metallov. Chast’ 2. Mekhanicheskie ispytaniya. Konstruktsionnaya prochnost’ [Mechanical Properties of Metals. Part 2. Mechanical Tests. Structural Strength]. Monograph. Moscow, Mashinostroenie Publ., 1972, 368 p. (In Russian).

Download

Inspection procedure of buildings for the purpose of subsequent assessment of their residual life

Vestnik MGSU 11/2014
  • Zolina Tat’yana Vladimirovna - State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU") Candidate of Technical Sciences, Professor, First Vice-rector, State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU"), 18 Tatishcheva str., Astrakhan, 414000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 98-108

This paper considers and asserts the need to obtain the results of inspection of a building at the stage of its commissioning in order to apply comprehensive methodology for assessing its residual life. The author proposes to build regression relationship by correlating the levels of the time series dynamics of stress at certain points of the object calculation scheme considering the results of subsequent surveys. It allows estimating the wear rate of structural elements. The assessment of the reliability and durability of the building frame in a deterministic form is based on the limit states method. The application of this method allows taking into account the random nature of not only the combination of existing loads, but also the strength properties of construction materials by creating a system of safety factors.

DOI: 10.22227/1997-0935.2014.11.98-108

References
  1. Rayzer V.D. Teoriya nadezhnosti v stroitel’nom proektirovanii : monografiya [Reliability Theory in Construction Design: Monograph]. Moscow, ASV Publ., 1998, 304 p. (In Russian).
  2. Sadchikov P.N., Zolina T.V. Sistematizatsiya metodov rascheta, analiza i prognozirovaniya rabotosposobnosti ob”ektov nedvizhimosti [Classification of Calculation Methods, Analysis and Prediction of Performance of Real Estate]. Perspektivy razvitiya stroitel'nogo kompleksa : materialy VII mezhdunarodnoy nauchno-prakticheskoy konferentsii professorsko-prepodavatel'skogo sostava, molodykh uchenykh i studentov 28—31 oktyabrya 2013 [Proceedings of the 7th International Scientific and Practical Conference of Academic Staff, Young Scientists and Students, October 28—31 "Prospects of Building Complex Development]. Under the general editorship of Gutmana V.A., Khachen'yana A.L. Astrakhan, GAOU AO VPO «AISI» Publ., 2013, vol. 1, pp. 102—107. (In Russian).
  3. Gordeev V.N., Lantukh-Lyashchenko A.I., Pashinskiy V.A., Perel’muter A.V., Pichugin S.F. Nagruzki i vozdeystviya na zdaniya i sooruzheniya [Loads and Effects on Buildings and Structures]. Moscow, ASV Publ., 2007, 482 p. (In Russian).
  4. Pshenichkina V.A., Belousov A.S., Kuleshova A.N., Churakov A.A. Nadezhnost’ zdaniy kak prostranstvennykh sostavnykh sistem pri seysmicheskikh vozdeystviyakh [Reliability of Buildings as Spatial Composite Systems under Seismic Actions]. Volgograd, VolgGASU Publ., 2010, 180 p. (In Russian).
  5. Chirkov V.P. Veroyatnostnye metody rascheta massovykh zhelezobetonnykh konstruktsiy [Probabilistic Methods of Calculation of Large Scale Reinforced Concrete Structures]. Moscow, Transport Publ., 1980, 134 p. (In Russian).
  6. Rzhanitsyn A.R. Teoriya rascheta stroitel’nykh konstruktsiy na nadezhnost’ [Theory of Reliability Calculation of Building Structures]. Moscow, Stroyizdat Publ., 1978, 240 p.
  7. Pshenichkin A.P. Osnovy veroyatnostno-statisticheskoy teorii vzaimodeystviya sooruzheniy s neodnorodno deformiruemymi osnovaniyami [Fundamentals of Probabilistic Theory of Cooperation of a Building with the Heterogeneous Deformed Grounds]. Volgograd, VolgGASU Publ., 2006, 226 p. (In Russian).
  8. Luzhin O.V. Veroyatnostnye metody rascheta sooruzheniy [Probabilistic Methods of Calculation of a Building]. Moscow, MISI im. V.V. Kuybysheva Publ., 1983, 78 p. (In Russian).
  9. Lychev A.S. Veroyatnostnye metody rascheta stroitel’nykh elementov i system [Probabilistic Methods of Calculation of Building Elements and Systems]. Moscow, ASV Publ., 1995, 143 p. (In Russian).
  10. Bulgakov S.N., Tamrazyan A.G., Rakhman I.A., Stepanov A.Yu. Snizhenie riskov v stroitel'stve pri chrezvychaynykh situatsiyakh prirodnogo i tekhnogennogo kharaktera [Reduction of Risks in Construction at the Emergencies of Natural and Technogenic Character]. Moscow, MAKS Press Publ., 2004, 304 p. (In Russian).
  11. Kul’terbaev Kh.P., Pshenichkina V.A. Sluchaynye protsessy i kolebaniya stroitel’nykh konstruktsiy i sooruzheniy [Casual Processes and Vibrations of Building Constructions and Structures]. Volgograd, VolgGASU Publ., 2006, 356 p. (In Russian).
  12. Skladnev N.N., Kurzanov A.M. Sostoyanie i puti razvitiya raschetov na seysmostoykost’ [State and Ways of Development of Seismic Strength Calculations]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Building]. 1990, no. 4, pp. 3—9. (In Russian).
  13. Bolotin V.V. Stochastic Models of Fracture with Applications to the Reliability Theory. Structural Safety and Reliability. Amsterdam, Oxford, New York, Elsevier, 1981, pp. 31—56.
  14. Ditlevsen O. Reliability against Defect Generated Fracture. Journal of Structural Mechanics. 1981, vol. 9, no. 2, pp. 115—137.
  15. Blockley D.I. Reliability Theory — Incorporating Gross Errors. Structural Safety and Reliability. Amsterdam, Oxford, New York, Elsevier, 1981, pp. 259—282.
  16. Lin Y.K., Shih T.Y. Column Response to Horizontal and Vertical Earthquakes. Journal of Engineering Mechanics Division, ASCE. 1980, vol. 106, no. EM-6, pp. 1099—1109.
  17. Moan T., Holand I. Risk Assessment of Offshore Structures: Experience and Principles. Structural Safety and Reliability. Amsterdam, Oxford, New York, Elsevier, 1981, pp. 803—820.
  18. Brown C.B. Entropy Constructed Probabilities. Proceeding ASCE. 1980, vol. 106, no. EM-4, pp. 633—640.
  19. Holicky M., Ostlund L. Vagueness of Serviceability Requirements. Proceeding the International Conference "Design and Assessment of Building Structures". Prague, 1996, vol. 2, pp. 81—89.
  20. Hoef N.P. Risk and Safety Considerations at Different Project Phases. Safety, Risk and Reliability — Trends in Engineering. International Conference. Malta, 2001, pp. 1—8.
  21. Pshenichkin A.P., Pshenichkina V.A. Nadezhnost’ zdaniy i osnovaniy v osobykh usloviyakh [Reliability of Buildings and Foundations in Special Conditions]. Volgograd, VolgGASU Publ., 2009, 218 p. (In Russian).
  22. Zolina T.V., Sadchikov P.N. Kontseptual’naya skhema issledovaniya napryazhenno-deformirovannogo sostoyaniya promyshlennogo zdaniya [Conceptual Scheme for Investigating the Stress-Strain State of an Industrial Building]. Vestnik Volgogradskogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2013, no. 33 (52), pp. 47—50. (In Russian).
  23. Zolina T.V. Svodnyy algoritm rascheta promyshlennogo ob”ekta na deystvuyushchie nagruzki s otsenkoy ostatochnogo resursa [Synthesis Algorithm for Calculating Existing Load on an Industrial Facility with the Assessment of Residual Life]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 6, no. 3—5. (In Russian).
  24. Zolina T.V., Sadchikov P.N. Metodika otsenki ostatochnogo resursa ekspluatatsii promyshlennogo zdaniya, osnashchennogo mostovymi kranami [Methods of Assessing the Residual Life of Industrial Buildings, Equipped with Overhead Cranes]. Vestnik Volgogradskogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2013, no. 33 (52), pp. 51—56. (In Russian).
  25. Zolina T.V., Sadchikov P.N. Programmno-raschetnyy kompleks «DINCIBnew». Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM ¹ 2014613866.09.04.2014. [Software and Calculation Complex "DINCIB-new". Certificate of State Registration of Computer Programs no. 2014613866, 9 April 2014]. (In Russian).

Download

Emergency destruction of a panel residence building, type series 1-115

Vestnik MGSU 11/2014
  • Malakhova Anna Nikolaevna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Architectural and Construction Design of Reinforced Concrete and Masonry Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 583-47-53; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Balakshin Andrey Sergeevich - State Unitary Enterprise of the Moscow Region Mosoblstroytsnil (Mosoblstroytsnil) Candidate of Technical Sciences, Director, State Unitary Enterprise of the Moscow Region Mosoblstroytsnil (Mosoblstroytsnil), 29-2, Olimpiyskiy prospect, Mytishchi, 141006, Moscow Region; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 109-117

The co-authors consider the design solution developed for a panel residence building, type series 1-115, and provide a description of the emergency destruction of structural elements of a 9-storey panel residence building of this type (built in 1979), following a gas explosion. The overall length of the building is 86.4 m; its width is 12 m. The structural system in this building represents a longitudinal wall. Its external longitudinal walls are wade of ceramsite concrete, while its interior walls are made of concrete. Its reinforced concrete hollow slabs rest on the longitudinal load-bearing walls. The transverse walls of staircases are made of concrete blocks. The strip foundation supports the load-bearing walls of the building. The epicenter of the explosion was located in the kitchen on the eighth floor of the building. The kitchen was immediately adjacent to the staircase of the building. Partial destruction of the building followed the gas explosion. Exterior walls of its eighth and ninth floors and the attic were destroyed. Panel buildings designed in pursuance of the longitudinal structural system are more vulnerable to explosive loads compared to buildings designed to the cross-wall structural system, where bearing slabs rest on three interior walls. Thus, all slabs rest on each of the three internal walls of the building on both sides. In the buildings designed to the longitudinal wall structural system, slabs rest on the two walls, one of which is external. The article is based on the report following the inspection of the technical condition of the building, undertaken subsequent to its emergency destruction.

DOI: 10.22227/1997-0935.2014.11.109-117

References
  1. Tipovoy proekt 111-94-43/75.2 Dom 9-etazhnyy 4-sektsionnyy 144-kvartirnyy [The Standard Project 111-94-43/75.2 9-storey 4-section 144-apartment Residential Building]. Moscow, MNIITEP Publ., 1969. Available at: http://allproekt.ru/catalog/project/599606. Date of access: 11.09.2014. (In Russian).
  2. Bulgakov S.N., Tamrazyan A.G., Rakhman I.A., Stepanov A.Yu. Snizhenie riskov v stroitel’stve pri chrezvychaynykh situatsiyakh prirodnogo i tekhnogennogo kharaktera [Reduction of Risks in the Construction in Emergency Situations of Natural and Technogenic Character]. Moscow, MAKS Press, 2004, pp. 180—209. (In Russian).
  3. Posobie po proektirovaniyu zhilykh zdaniy. Vyp. 3. Konstruktsii zhilykh zdaniy (k SNiP 2.08.01—85) [Guidelines on Design of Residential Houses. Issue 3. Constructions of Residential Houses (to SNiP 2.08.01—85)]. Moscow, TsNIIEPzhilishcha Publ., 1986, 305 p.
  4. Maklakova T.G. Konstruirovanie krupnopanel'nykh zdaniy [Construction of Large-panel Buildings]. Moscow, Stroyizdat Publ., 1975, pp. 33—35. (In Russian).
  5. Kashevarova G.G., Pepelyaev A.A. Modelirovanie i retrospektivnyy analiz vzryva bytovogo gaza v kirpichnom zdanii [Modeling and Lookback Study of Utility Gas Explosion in Brick Buildings]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Buildings]. 2010, no. 2, pp. 31—36. (In Russian).
  6. Mkrtychev O.V., Dorozhinskiy V.B. Veroyatnostnoe modelirovanie vzryvnogo vozdeystviya [Probabilistic Modeling of Explosive Loading]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 11, pp. 278—282. (In Russian).
  7. Mkrtychev O.V., Dorozhinskiy V.B. Analiz podkhodov k opredeleniyu parametrov vzryvnogo vozdeystviya [Assessment of Reliability of the Foundation Slab Resting on the Linearly Deformable Bed and Characterized by the Modulus of Deformation Variable in X- and Y-axis Directions]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 5, pp. 45—49. (In Russian).
  8. Mkrtychev O.V., Dorozhinskiy V.B. Bezopasnost’ zdaniy i sooruzheniy pri vzryvnykh vozdeystviyakh [The safety of buildings and structures under explosive effects]. Vestnik NITs Stroitel’stvo [Proceedings of Scientific Research Center Construction]. 2011, no. 3—4, pp. 21—34. (In Russian).
  9. Maes M.A., Fritzsons K.E., Glowienka S. Structural Robustness in the Light of Risk and Consequence Analysis. Structural Engineering International. 2006, vol. 16, no. 2, pp. 101—107. DOI: http://dx.doi.org/10.2749/101686606777962468.
  10. Kashevarova G.G., Pepelyaev A.A., Zobacheva A.Yu. Vozdeystvie vzryva bytovogo gaza na protsess deformirovaniya i razrusheniya konstruktsiy kirpichnogo zhilogo zdaniya [Impact of Utility Gas Explosion on the Deformation and Fracture of the Constructions of Brick Residential Buildings]. SWold : sbornik nauchykh trudov. Sovremennye napravleniya teoreticheskikh i prikladnykh issledovaniy 2012 : materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii [SWold: Collection of Scientific Works. Current Trends of Theoretical and Applied Investigations 2012 : Materials of International Science and Practice Conference]. Odessa, KUPRIENKO Publ., 2012, issue 1, vol. 4, pp. 58—61. (In Russian).
  11. Kashevarova G.G., Pepelyaev A.A. Issledovanie problemy zashchity tipovykh zhilykh zdaniy ot progressiruyushchego razrusheniya [Study of the Problems of Standard Residential Buildings Protection from Progressive Collapse]. International Journal for Computational Civil and Structural Engineering. 2008, vol. 4, issue. 2, pp. 69—70. (In Russian).
  12. Pilyugin L.P. Obespechenie vzryvoustoychivosti zdaniy s pomoshch’yu predokhranitel’nykh konstruktsiy [Providing Explosion Stability of Buildings with Safety Constructions]. Moscow, Pozharnaya bezopasnost’ i nauka Publ., 2000, 224 p. (In Russian).
  13. Timothy Beach, Peggy Van Eepoel. Blast Protection and Historic Preservation. Civil Engineerig. October, 2012, pp. 66—71.
  14. Smith J.W. Structural Robustness Analysis and the Fast Fracture Analogy // Structural Engineering International. 2006, vol. 16, no. 2, pp. 118—123. DOI: http://dx.doi.org/10.2749/10.2749/101686606777962521.
  15. Starossek U. Typology of Progressive Collapse. Engineering Structures. 2007, vol. 29, no. 9, pp. 2302—2307. DOI: http://dx.doi.org/10.1016/j.engstruct.2006.11.025.
  16. Starossek U. Disproportionate Collapse: a Pragmatic Approach. Structures and Buildings. 2007, vol. 160, no. 6, pp. 317—325. DOI: http://dx.doi.org/10.1680/stbu.2007.160.6.317.
  17. Starossek U., Haberland M. Disproportionate Collapse: Terminology and Procedures. Journal of Performance of Constructed Facilities. 2010, vol. 24, no. 6, pp. 519—528. DOI: http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0000138.
  18. Ellingwood B.R., Dusenberry D.O. Building Design for Abnormal Loads and Progressive Collapse. Infrastructure Engineering. 2005, vol. 20, no. 3, pp. 194—205. DOI: http://dx.doi.org/10.1111/j.1467-8667.2005.00387.x.
  19. Starossek U., Haberland M. Approaches to Measures of Structural Robustness. Structure and Infrastructure Engineering. 2011, vol. 7, nos. 7 and 8, pp. 625—631. DOI: http://dx.doi.org/10.1080/15732479.2010.501562.
  20. Al’bom rabochikh chertezhey po vosstanovleniyu konstruktsiy razrushennogo vzryvom gaza 9-etazhnogo doma po adresu: MO, g. Sergiev Posad, pos. Zagorskie Dali, d. 3 (OAO «KB im. A.A. Yakusheva») [Album of Working Drawings for Restoration of the Constructions of 9 Storey Building Destroyed by a Gas Explosion at Moscow Region, Sergiev Posad, Zagorskie Dali village, 3]. Moscow, 2013. (In Russian).

Download

Method of determining external defects of a structure by analyzing a series of its images in the monitoring system

Vestnik MGSU 3/2015
  • Loktev Aleksey Alekseevich - Moscow State University of Civil Engineering (MGSU) Doctor of Physical and Mathematical Sciences, Associate Professor, Department of Theoretical Mechanics and Aerodynamics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-24-01; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bakhtin Vadim Fedorovich - Engineering Center of Technical Examination and Diagnosis “Expert” (ECTED “Expert”) Head, Department of the Examination of Industrial Safety of Buildings and Structures, Engineering Center of Technical Examination and Diagnosis “Expert” (ECTED “Expert”), 82 Konstruktorov str., Voronezh, 394038, Russian Federation; +7 (473) 2788-991; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Chernikov Igor’ Yur’evich - Engineering Center of Technical Examination and Diagnosis “Expert” (ECTED “Expert”) leading specialist, Department for the Examination of Industrial Safety of Buildings and Structures, Engineering Center of Technical Examination and Diagnosis “Expert” (ECTED “Expert”), 82 Konstruktorov str., Voronezh, 394038, Russian Federation; +7 (473) 2788-991; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Loktev Daniil Alekseevich - Bauman Moscow State Technical University (BMSTU) postgraduate student, Department of Information Systems and Telecommunications, Bauman Moscow State Technical University (BMSTU), 5 2-ya Baumanskaya str., Moscow, 105005, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 7-16

The recent decade has been the time of the rapid development of communication infrastructure, but very often the structures erected in the middle of the last century are used as a basis for new transmission units and antennas, which are considerably worn out. In this regard the control problems of the infrastructure facilities such as towers and masts are often emerging. Such tasks may be associated with the test required when installing additional equipment and modules, as well as during the scheduled inspection and certification of individual objects in accordance with the legal documents. Timely detection of critical deformations will to a large extent prevent the occurrence of accidents and disasters. For accurate detection of deformations load cells on the basis of the piezoelectric effect and fiber-optic sensors based on Bragg gratings are most commonly used, but in such distributed information measurement systems there are significant drawbacks, which narrow the scope of their possible application. Among the main disadvantages there are: high cost of initial installation and configuration, and the subsequent operation of such systems. Traditional measuring sensors require power, separate line of measurement information signal, as well as lines for supplying control signals. A significant limitation is that any sensor detects deformation or other parameters of the design only for its whole base, thus, active sensors should be installed in structures, in which an altered state was detected by visual inspection or by other means. The emergence of video and photo-detectors with high resolution and other settings to get a high-quality image of the object made it possible to establish the systems for infrastructure objects’ monitoring with the characteristics acceptable for practice. At the heart of such systems there are not only detectors with high sensitivity, but also the algorithms for the objects’ recognition, determination of their geometrical parameters by analyzing a series of images. This is the issue and the subject of this work, which developed the computational algorithms to detect external defects. At the stage of preliminary image processing there is the delineation of characteristic points in the image and the calculation of the optical flow in the area of these points. When determining the defect position, the characteristic points of the image are determined using the detector of Harris-Laplace, which are located in the central part of the image. The characteristic points outside the frame are considered to be background. There is an identification of the changes in characteristic points in the frame in relation to the background by using a pyramidal iterative scheme. In the second stage servo frame focuses on a specific point with the greatest change in relation to the background in the current time. The algorithm for object detection and determination of its parameters includes three procedures: detection procedure start; the procedure of the next image processing; stop procedure for determining the parameters of the object. The method described here can be used to create information-measuring system of monitoring based on the use of photodetectors with high-definition and recognition of defects (color differences and differences in the form compared to the background). Since almost each examination of a building or structure begins with a visual examination and determination of the most probable places of occurrence and presence of the defects, the proposed method can be combined with this stage and it will simplify the process of diagnosing, screening for the development of projects on reconstruction and placement of additional equipment on the existing infrastructure.

DOI: 10.22227/1997-0935.2015.3.7-16

References
  1. Othonos A., Kalli K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. London, Artech House, 1999, 422 p.
  2. Ivanov V.S., Kravtsov V.E., Tikhomirov S.V. Problems of Metrological Support of Measurements in Fiber-Optic Transmission Systems. Proc. of SPIE. 2002, vol. 4900, pp. 430—440. DOI: http://dx.doi.org/10.1117/12.484593.
  3. Nielsen C.K., Andersen T.V., Keiding S.R. Stability Analysis of an All-Fiber Coupled Cavity Fabry-Perot Additive Pulse Mode-locked Laser. J. Quantum Electronics. 2005, vol. 41, no. 2, pp. 198—204. DOI: http://dx.doi.org/10.1109/JQE.2004.839717.
  4. Bakhtin V.F., Chernikov I.Yu., Loktev A.A. Raschet na dinamicheskoe vozdeystvie machty sotovoy sistemy svyazi i plity perekrytiya, na kotoruyu ona opiraetsya [Analysis of the Dynamic Load Applied to a Cellular Communication Mast and a Ceiling Panel on Which It Rests]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 8, pp. 66—75. (In Russian)
  5. Akimov D., Vatolin D., Smirnov M. Single-Image Depth Map Estimation Using Blur Information. 21st GraphiCon International Conference on Computer Graphics and Vision. Conference Paper. Moscow, 2011, pp. 12—15.
  6. Churin P., Poddaeva O.I. Aerodynamic Testing of Bridge Structures. Applied Mechanics and Materials. 2014, vol. 477—478, pp. 817—821. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.477-478.817.
  7. Gaspar T., Oliveira P. New Dynamic Estimation of Depth from Focus in Active Vision Systems. Preprints of the 18th IFAC World Congress, Milano (Italy), August 28 — September 2, 2011. Pp. 9470—9475. DOI: http://dx.doi.org/10.5220/0003356904840491.
  8. Loktev A.A. Non-elastic models of interaction of an impactor and an Uflyand — Mindlin Plate. International Journal of Engineering Science. 2012, vol. 50, no. 1, pp. 46—55. DOI: http://dx.doi.org/10.1016/j.ijengsci.2011.09.004.
  9. Kuhnert K.-D., Langer M., Stommel M., Kolb A. Dynamic 3D-Vision. Vision Systems: Applications. June 2007, pp. 311—334. DOI: http://dx.doi.org/10.5772/4995.
  10. Levin A., Fergus R., Durand Fr., Freeman W.T. Image and Depth from a Conventional Camera with a Coded Aperture. ACM Transactions on Graphics. 2007, vol. 26, no. 3, art. 70, pp. 124—132.
  11. Nagata T., Koyanagi M., Tsukamoto H., Saeki S., Isono K., Shichida Y., Tokunaga F., Kinoshita M., Arikawa K., Terakita A. Depth Perception from Image Defocus in a Jumping Spider. Science. 2012, vol. 335, no. 6067, pp. 469—471. DOI: http://dx.doi.org/10.1126/science.1211667.
  12. Bruhn A., Weickert J., SchnEorr C. Lucas-Kanade meets Horn-Schunck: Combining Local and Global Optic Flow Methods. International Journal of Computer Vision. 2005, vol. 61, no. 3, pp. 211—231. DOI: http://dx.doi.org/10.1023/B:VISI.0000045324.43199.43.
  13. Cremers D., Soatto S. Motion Competition: a Variational Framework for Piecewise Parametric Motion Segmentation. International Journal of Computer Vision. 2005, vol. 62, no. 3, pp. 249—265. DOI: http://dx.doi.org/10.1007/s11263-005-4882-4.
  14. Elder J.H., Zucker S.W. Local Scale Control for Edge Detection and Blur Estimation. IEEE Transaction on Pattern Analysis and Machine Intelligence. 1998, vol. 20, no. 7, pp. 120—127.
  15. Hahne Uw. Real-time Depth Imaging. Tu Berlin, Fakultät Iv, Computer Graphics, 2012, 108 p.
  16. Somaiya A.H. High Speed Automatic Depth Map Generation for 3D Television. European Scientific Journal December edition. 2012, vol. 8, no. 30, pp. 127—142.
  17. Jiwani M.A., Dandare S.N. Single Image Fog Removal Using Depth Estimation Based on Blur Estimation. International Journal of Scientific and Research Publications. 2013, vol. 3, no. 6, pp. 1—6.
  18. Kowdle A., Snavely N., Chen T. Recovering Depth of a Dynamic Scene Using Real World Motion Prior. Proceedings of Computer Vision and Pattern Recognition (CVPR). 2011, pp. 14—20. DOI: http://dx.doi.org/10.1109/ICIP.2012.6467083.
  19. Robinson Ph., Roodt Yu., Nel A. Gaussian Blur Identification Using Scale-Space Theory. Faculty of Engineering and Built Environment University of Johannesburg, South Africa, 2007, pp. 68—73.
  20. Wang H., Cao F., Fang Sh., Yang Cao, Fang Ch. Effective Improvement for Depth Estimated Based on Defocus Images. Journal of Computers. April 2013, vol. 8, no. 4, pp. 888—895. DOI: http://dx.doi.org/10.4304/jcp.8.4.888-895.

Download

CLIMATIC CONDITIONS OF THE ATMOSPHERIC DISPERSIONAT THE CONSTRUCTION SITE OF NIZHEGORODSKAYA NUCLEAR POWER PLANT

Vestnik MGSU 1/2013
  • Bryukhan’ Andrey Fedorovich - GrafProektStroyIzyskaniya Limited Liability Company +7 (495) 637-67-71, GrafProektStroyIzyskaniya Limited Liability Company, 1 Fab- richnaya Str., Schelkovo, Moscow Region, 141100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 116-124

A study of the climatic conditions of the atmospheric dispersion has been performed within the framework of a hydrometeorological survey of the site of Nizhegorodskaya NPP (Navashino district, Nizhny Novgorod Region).According to the findings of annual synchronous observations performed at the NPP site and at the principal aerological station of Nizhny Novgorod in the median months of seasons, as well as the climatic data analysis over the region, representativeness of data generated at the principal station in relation to the NPP site data has been identified. In particular, it is proven that components of the wind velocity vector at the site and at the principal aerological station differ insignificantly. Analyses of characteristics of the atmospheric dispersion using relevant aerological data covering the period of 47 years (January 1964 to December 2010), as well as analyses of the climatic field of the meteorological dilution factor in the normal mode of operation of a separate power unit have been performed.The author has found that the approach to the study of the atmospheric dispersion is also applicable to the positioning and design of thermal power plants.

DOI: 10.22227/1997-0935.2013.1.116-124

References
  1. SPPNAE—87. p. 4.1. Osnovnye trebovaniya po sostavu i ob”emu izyskaniy i issledovaniy pri vybore punkta i ploshchadki AS [Summarized List and Plan for Development of Rules and Regulations in Nuclear Energy — 87, Chapter 4.1. Basic Requirements for the Composition and Volume of Engineering Surveys and Researches concerning the Siting of Nuclear Power Plants]. Moscow, Minatomenergo SSSR [Ministry of Atomic Energy of the USSR]. 1987, 93 p.
  2. Atmospheric Dispersion in Nuclear Power Plant Siting: A Safety Guide. IAEA Safety Series, no. 50-SG-S3. Vienna, IAEA, 1980, 108 p.
  3. Dispersion of Radioactive Material in Air and Water and Consideration of Population Distribution in Site Evaluation for Nuclear Power Plants. IAEA Safety Series, no. NS-G-3.2. Vienna, IAEA, 2002, 32 p.
  4. Bryukhan’ F.F., Ivanov V.N. Kontseptual’naya skhema aerometeorologicheskikh issledovaniy pri vybore punkta i ploshchadki atomnykh stantsiy [Conceptual Framework of Aero-meteorological Research into Siting of Nuclear Power Plants]. Trudy IEM [Proceedings of the Institute of Experimental Meteorology]. Moscow, Gidrometeoizdat Publ., 1992, no. 55(155), pp. 3—12.
  5. Aldukhov O.A., Bryukhan’ A.F. Paket programm statisticheskoy obrabotki aerologicheskikh dannykh dlya otsenki usloviy atmosfernoy dispersii pri geoekologicheskom obosnovanii stroitel’stva AES i TES [Software Package for Statistical Processing of Upper-air Data Designated for Assessment of Conditions of Atmospheric Dispersion as Part of Geoecological Justification of Construction of Nuclear and Thermal Power Plants]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 2, pp. 188—192.
  6. VSN 34 72.111—92. Inzhenernye izyskaniya dlya proektirovaniya teplovykh elektricheskikh stantsiy [Institutional Building Codes 34 72.111—92. Engineering Survey for the Design of Thermal Power Plants]. Mintopenergo Rossii [Ministry of Fuel and Energy of the Russian Federation]. Moscow, 1992, 121 p.

Download

COMPREHENSIVE ENGINEERING AND RADIATION SURVEYS IN DECOMMISSIONING OF NUCLEAR POWER PLANTS

Vestnik MGSU 1/2013
  • Engovatov Igor’ Anatol’evich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Construction of Nuclear Installations; +7 (499) 183-26-74, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 125-132

Comprehensive Engineering and Radiation Surveys (CERS) constitute the most important component of the final stage of the life cycle of NPPs, that is, decommissioning of nuclear power plants (NPP).Decommissioning of NPPs is accompanied by specific problems, including radioactive contamination, construction of shields, boxes and rooms, and the so-called residual radioactivity. Although these works account for the 20% of the total amount of work associated with decommissioning, they constitute a fundamental difference between decommissioning of any industrial enterprise and an NPP.Objectives, tasks, scopes and other matters of comprehensive engineering and radiological surveys that accompany the decommissioning of nuclear power plants are discussed by the author. They include:information basis, goals and objectives of CERS within the framework of decommissioning of NPP units;CERS programs;methods and means of engineering surveys;findings of engineering surveys;objectives, tasks and scopes of radiation surveys;methods and means of radiation surveys;findings of radiation surveys;objectives, scopes of application and contents of comprehensive engineering and radiation survey reports required for the decommissioning of NPP units;conclusions and recommendations based on the findings provided in CERS in respect of NPP units.

DOI: 10.22227/1997-0935.2013.1.125-132

References
  1. Bylkin B.K., Engovatov I.A., Rubtsov P.M. Sovershenstvovanie reguliruyushchikh dokumentov po vyvodu iz ekspluatatsii energoblokov AES [Improvement of Documents Regulating the Decommissioning of Power Generating Units of Nuclear Power Plants]. Atomnaya energiya [Nuclear Power]. December 2009, vol. 107, no. 6, pp. 307—312.
  2. Igor A. Engovatov et alia. Radiation Safety Assurance: Decommissioning Nuclear Reactors at Civil and Military Installatio ns. Arlington, Virginia, USA. 2005.
  3. Dubrovskiy V.B., Lavdanskiy P.A., Engovatov I.A. Stroitel’stvo atomnykh elektrostantsiy [Construction of Nuclear Power Plants]. Moscow, ASV Publ., 2010, 368 p.
  4. International Atomic Energy Agency, Decommissioning of Nuclear Power Plants and Research Reactors, IAEA Safety Standards Series no. WS-G-2.1, IAEA, Vienna, 1999.
  5. Decommissioning Strategies for Facilities Using Radioactive Material, Safety Reports Series. No 50, IAEA, Vienna, 2007.
  6. NP-012 «Pravila obespecheniya bezopasnosti pri vyvode iz ekspluatatsii bloka atomnoy stantsii» NP-007—98 [Norms and Rules — 012 “Safety Assurance Rules Regulating Decommissioning of Power Generating Units of Nuclear Power Plants” Norms and Rules 007—98]. Gosatomnadzor Rossii [Federal Nuclear and Radiation Safety Supervisory Body], 1998.

Download

FUNDAMENTALS OF THE METHOD OF DYNAMIC MONITORING OF DEFORMATION CHARACTERISTICS OF BUILDINGS AND STRUCTURES

Vestnik MGSU 1/2013
  • Patrikeev Aleksandr Vladimirovich - Centre for Diagnostics and Monitoring (TsDM) Candidate of Technical Sciences, Director, Monitoring Department, Centre for Diagnostics and Monitoring (TsDM), 95A Varshavskoye shosse, Moscow, 117556, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Salatov Evgeniy Konstantinovich - 22 Pavla Korchagina St., Moscow, 129626, Russian Federation +7 (495) 683-99-93., 22 Pavla Korchagina St., Moscow, 129626, Russian Federation, ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 133-138

The article covers the relevant problem of dynamic monitoring of buildings and structures. Items exposed to dynamic monitoring primarily include high-rise buildings and structures, as well as buildings and structures exposed to crane loads.The authors provide the general procedure of dynamic monitoring and describe its principal stages. The whole succession of actions that constitute the monitoring of the technical condition of buildings and structures can be split into several stages to be stretched over the time period. The authors demonstrate the technical specifications (including dynamic parameters) of a building or a structure in the process of its operation in the form of a graph. The authors propose their methodology of dynamic monitoring that is considered on the basis of a simple example. The authors argue that the more technically sophisticated the item to be monitored, the tougher the requirements designated for its safe operation; therefore, the interval between the stages of monitoring should be shorter. Unique structures may need monitoring using automated stationary systems to be designed within the framework of special-purpose projects.

DOI: 10.22227/1997-0935.2013.1.133-138

References
  1. Balageas D., Fritzen C.P., Guemes A. Structural Health Monitoring. Publ. ISTE Ltd, London, 2006, 496 p.
  2. Korgin A.V., Shablinskiy G.E., Sergeevtsev E.Yu., Zubkov D.A. Dinamicheskiy monitoring konstruktsiy dekorativnogo navesa i peshekhodnogo mosta v aeroportu Sheremet'evo-3 [Dynamic Monitoring of Structures of a Decorative Shed and a Pedestrian Bridge at Sheremetyevo-3 Airport]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 4, pp. 222—228.
  3. Lazebnik G. E, Kosheleva N.N. Monitoring nesushchikh konstruktsiy zdaniy povyshennoy etazhnosti [Monitoring of Bearing Structures of Excess Height Buildings]. Svit geotekhniki [The World of Geotechnics]. 2009, no. 1, pp. 14—18.
  4. Gur'ev V.V., Dorofeev V.M. O monitoringe tekhnicheskogo sostoyaniya nesushchikh konstruktsiy vysotnykh zdaniy i shirokoproletnykh sooruzheniy [On the Monitoring of the Technical Condition of Bearing Structures of High-rise Buildings and Large-span Structures]. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Machinery, Technologies of the 21st Century]. 2006, no. 7(90), pp. 68—69.
  5. GOST R 53778—2010. Zdaniya i sooruzheniya. Pravila obsledovaniya i monitoringa tekhnicheskogo sostoyaniya. Data vvedeniya 2011-01-01. [State Standard of Russia 53778—2010. Buildings and Structures. Rules of Inspection and Monitoring of Their Technical Condition. Date of Introduction 2011-01-01]. Moscow, 2010, 67 p.
  6. Ulybin A.V., Vatin N.I. Printsipial'nye otlichiya GOST R 53778—2010 ot starykh normativov po obsledovaniyu zdaniy i sooruzheniy [Principal Differences between State Standard R 53778-2010 from Former Regulations Applicable to Inspection of Buildings and Structures]. Gidrotekhnika [Hydraulic Engineering]. 2011, no. 2(23), pp. 54—56.
  7. GOST R 54859—2011. Zdaniya i sooruzheniya. Opredelenie parametrov osnovnogo tona sobstvennykh kolebaniy. Data vvedeniya 2012-01-07. [State Standard of Russia Buildings and Structures 54859—2011. Identification of Parameters of the Basic Tone of Natural Oscillations of Buildings. Date of Introduction 2012-01-07]. Moscow, 2012, 64 p.
  8. Patrikeev A.V. Povyshenie urovnya bezopasnosti inzhenernykh sooruzheniy na primere Glavnogo monumenta pamyatnika Pobedy na Poklonnoy gore v g. Moskve [Improvement of Safety of Engineering Structures Exemplifi ed by the Main Monument of the Victory Memorial on Poklonnaya Hill in the city of Moscow]. Problemy upravleniya kachestvom gorodskoy sredy [Problems of the Urban Environment Quality Management]. Collected works of the 11th Scientific Conference. Moscow, RAGS Publ., 2007, p. 82.
  9. Patrikeev A.V., Salatov E.K., Spiridonov V.P. Dinamicheskiy monitoring zdaniy i sooruzheniy kak odin iz kriteriev obespecheniya bezopasnoy ekspluatatsii [Dynamic Monitoring of Buildings and Structures as One of the Criteria of Their Safe Exploitation]. Tekhnologicheskie problemy prochnosti [Technological Problems of Strength]. Collected works of the XVIII International Seminar. Podol'sk, 2011, pp. 78—81.
  10. Korenev B.G., Rabinovich I.M. Spravochnik po dinamike sooruzheniy [Reference Book on Dynamics of Structures]. Moscow, Stroyizdat Publ., 1972, 511 p.

Download

LARGE-SCALE ACCIDENTS AT THERMAL POWER PLANTS (TPP) AND THEIR INFLUENCEON EQUIPMENT LAYOUTS INSIDE MAIN BUILDINGS

Vestnik MGSU 4/2013
  • Belov Vyacheslav Vasil’evich - Moscow State University of Civil Engineering (MGSU) master student, Department of Construction of Thermal and Nuclear Power Plants; +7 (499) 183-25-83, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pergamenshchik Boris Kliment’evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Construction of Thermal and Nuclear Power Plants; +7 (499) 183-25-83., Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 61-69

The co-authors study the problem of large-scale accidents inside main buildings of steam thermal power plants (TPP), their causes and consequences. Within the framework of the research, the co-authors provide statistical data, frequency of major accidents and their most demonstrative examples. The research demonstrates relationship between large-scale accidents and equipment layouts inside main buildings. The model developed by the co-authors may be used to assess the reliability of individual engineering systems (power units), and their interconnection.As a result, the main building is represented as a set of independent engineering systems having similar or different degrees of reliability calculated or defined empirically. Some types of accidents within these systems may cause large-scale accidents, as well as accidents within other systems that maintain no immediate connection to the system already exposed to the accident, but remain in the same building. It is proven that efficient improvement of reliability of any engineering systems depends on the threshold of economic viability. The best solution consists in reduction of the number of engineering systems arranged within one main building.

DOI: 10.22227/1997-0935.2013.4.61-69

References
  1. Terent’ev I.A., Raev B.Kh., Valitov V.A. Analiz pozharov, proizoshedshikh na teplovykh elektrostantsiyakh Mintopenergo RF za 1992 god [Analysis of Fires at Thermal Power Plants of the Ministry of Fuel and Energy of the Russian Federation in 1992]. Moscow, SPO ORGRES Publ., 1993, p. 37.
  2. Ohlsen J. Brandschutz bei Neubaukonzepten und — projekten aus Sicht eines Versicherers. VGB PowerTech, 2009, no. 12, pp. 88—91.
  3. Golodnova O.S. O faktorakh, sposobstvuyushchikh povysheniyu riska krupnykh tekhnogennykh avariy [Factors Boosting the Risk of Major Industrial Accidents]. Vesti v elektroenergetike [Power Industry News]. 2010, no. 1, pp. 3—10.
  4. Meier H.–J., Alf M., Fischedik M., Hillebrand B., Lichte H., Meier J., Neubronner M., Schmitt D., Viktor W., Wagner M. Reference Power Plant North Rhine–Westfalia. VGB PowerTech, 2004, no. 5, pp. 76—89.
  5. Streer W., Hollman D., Kiener Ch., Rothbauer S., Montrone F., Sutor A. RAM Process Optimizes IGCC Design. Power, 2011, vol. 155, no. 3, pp. 58—64.

Download

Experimental research into the stress-strainstate of high-rise buildings concrete structures

Vestnik MGSU 10/2013
  • Almazov Vladlen Ovanesovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Reinforced Concrete and Masonry Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Klimov Alexey Nikolaevich - Moscow State University of Civil Engineering (MGSU) Assistant, Department of Reinforced Concrete and Masonry Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 102-109

Some results of high-rise buildings monitoring program are presented in this paper. The monitoring system is currently operating at the high-rise apartment building in Moscow. The vibrating wire strain gauges were embedded in the foundation slab and groundlevel walls during the construction. Measurements are carried out automatically at 6-hour intervals, and received in real time by the monitoring station. In this paper the result of measuring the strain in the concrete walls during 4 years is reported.The computer model of the building was made in order to compare the experimental and predicted data. Mathematical models of a high-rise building are simplified, but we are taking into account the main factors, that influence the stress-strain state of reinforced concrete structures. These factors are: influence of soil base, phases of construction and change of concrete deformation characteristics. The total strain in constructions was calculated as a sum of a strain under load, thermal strain, plastic shrinkage and creep. This data was compared with the total strain in structures measured by the gauges.The analysis of quantitative and qualitative correspondence between the model and actual data was performed. The comparison shows that the theoretical results obtained by the performed procedure are similar to the experimental data. It demonstrates that the model reflects the actual behavior of constructions. The differences found during the comparison are due to the redistribution of stresses from one part of a construction to the other that can occur even if the load is constant. This phenomenon is clearly seen during the suspension of construction. Some differences due to unaccounted factors were found, which should be investigated later.

DOI: 10.22227/1997-0935.2013.10.102-109

References
  1. Casciati F. An Overview of Structural Health Monitoring Expertise within the European Union. In: Wu Z.S., Abe M. Structural Health Monitoring and Intelligent Infrastructure — Proceedings of the 1st International Conference on Structural Health Monitoring and Intelligent Infrastructure. Lisse, the Netherlands, Balkema. 2003, vol. 1, pp. 31—37.
  2. Glisic B., Inaudi D. Fibre Optic Methods for Structural Health Monitoring. John Wiley & Sons, Inc., 2007, 276 p.
  3. Ko J.M., Ni Y.Q. Technology Developments in Structural Health Monitoring of Largescale Bridges. Engineering Strucutres. Elsevier, 2005, vol. 27, no.12, pp. 1715—1725.
  4. Katzenbach R, Hoffmann H., Vogler M., Moormann C. Costoptimized Foundation Systems of High-Rise Structures, based on the Results of Actual Geotechnical Research. International Conference on Trends in Tall Buildings, September 5—7, 2001. Frankfurt on Main, pp. 421—443.
  5. Schmitt A., Turek J., Katzenbach R. Application of Geotechnical Measurements for Foundations of High Rise Structures. 2nd World Engineering Congress (WEC), 22—25 July 2002. Sarawak, Malaysia, pp. 40—46.
  6. Glisic B., Inaudi D., Lau J.M., Fong C.C. Ten-year Monitoring of High-rise Building Columns Using Long-gauge Fiber Optic Sensors. Smart Materials and Structures, 2013, vol. 22, no. 5, paper 055030.
  7. Voznyuk A.B., Kapustyan N.K., Tarakanovskiy V.K., Klimov A.N. Monitoring v protsesse stroitel'stva napryazhenno-deformirovannogo sostoyaniya nesushchikh konstruktsiy i gruntov osnovaniya vysotnykh zdaniy v Moskve [Stress-strain State Monitoring of Structures and Soil Base of High-rise Buildings in Moscow]. Budivel?ni konstruktsii [Building Constructions]. Kiev, 2010, vol. 73, pp. 461—467.
  8. Almazov V.O., Klimov A.N. Aktual'nye voprosy monitoringa zdaniy i sooruzheniy [Topical Issues of Buildings and Structures Monitoring]. Sbornik dokladov traditsionnoy nauchno-tekhnicheskoy konferentsii professorsko-prepodavatel'skogo sostava Instituta stroitel'stva i arkhitektury [Collected Reports of the Traditional Scientific and Technical Conference of the University Faculty of the Institute of Civil Engineering and Architecture]. Moscow, MGSU Publ., 2010, pp. 169—174.
  9. Ter-Martirosyan Z.G., Telichenko V.I., Korolev M.V. Problemy mekhaniki gruntov, osnovaniy i fundamentov pri stroitel'stve mnogofunktsional'nykh vysotnykh zdaniy i kompleksov [Problems of Soil Mechanics, Soil Bases and Foundations in the process of Erection of High-rise Buildings]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2006, no. 1, pp. 18—27.
  10. Kryzhanovskiy A.L., Rubtsov O.I. Voprosy nadezhnosti proektnogo resheniya fundamentnykh plit vysotnykh zdaniy [Reliability of Foundation Slabs of High-rise Buildings]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2006, no. 1, pp. 191—198.
  11. Bezvolev S.G. Proektirovanie i raschety osnovaniy i fundamentov vysotnykh zdaniy v slozhnykh inzhenerno-geologicheskikh usloviyakh [Designing Procedure and Calculations of Soil Bases and Foundations of High-rise Buildings in Difficult Geotechnical Conditions]. Razvitie gorodov i geotekhnicheskoe stroitel'stvo [Development of Urban Areas and Geotechnical Engineering]. 2007, no. 11, pp. 98—118.
  12. Kabantsev O.V., Karlin A.V. Raschet nesushchikh konstruktsiy zdaniy s uchetom istorii vozvedeniya i poetapnogo izmeneniya osnovnykh parametrov raschetnoy modeli [Calculation of Bearing Structures of Buildings with Due Regard to the History of Construction and Stage-by-stage Change of Key Parameters of Computational Model]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2012, no. 7, pp. 33—35.
  13. Rekomendatsii po uchetu polzuchesti i usadki betona pri raschete betonnykh i zhelezobetonnykh konstruktsiy [Guidance on Accounting for Creep and Shrinkage of Concrete in case of Calculation of Reinforced Concrete Structures]. Moscow, Stroyizdat Publ, 1988, 121 p.
  14. Klimov A.N. Metodika obrabotki dannykh sistemy monitoringa vysotnogo zdaniya // Promyshlennoe i grazhdanskoe stroitel'stvo [Techniques of Data Processing of Monitoring System of High-rise Buildings]. 2012, no. 12, pp. 42—43.

Download

Dynamic characteristics investigations of nuclear power plants containment shells using physicaland mathematical models and real projects

Vestnik MGSU 11/2013
  • Andreeva Peraskovya Ivanovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Strength of Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shоsse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zavalishin Sergey Iosifovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Senior Research Worker, Head, Research Institute of Experimental Mechanics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shоsse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Shablinskiy Georgiy Eduardovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Senior Research Worker, Research Institute of Experimental Mechanics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shоsse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 114-122

The article reveals comparative results of experimental model studies of the dynamical characteristics of containment shells used for their calculation and construction as well as actual calculation of dynamic characteristics and the results of actual full-scale investigations executed after 40 years of their operation. This comparison of present-day calculations and full-scale researches showed their agreement with the previous investigations performed on physical models of containment shells.The dynamic analysis of the facilities on the base of physical models were widely used in the 70's of the 20th century, when the computers were still in the initial level of development. The results of these model studies were used to justify the strength of critical structures, including nuclear power plants (NPPs), some of which have already worked for over 40 years. The current investigation gives the opportunity to compare the results of the previous model studies with the present calculations of NPP protective containments (shells) and the field studies results. The field investigations were carried out on the reactor containment of VVER-1000 reactor for the 1st unit of Kalinin NPP.1. Model studies of the dynamic characteristics on the physical model base. In order to provide dynamic model studies in the laboratory it is necessary to solve the following problems: 1) to fulfill certain similarity conditions, which provide unambiguous recalculation of the results to the full-scale structures; 2) to determine the scale of the model and its production material, which is related to the structure and characteristics of the vibration-testing machine (shaker), the transitional fixing devices for the model, special vibrators for dynamic loads, etc. The particular attention should be paid to the registration, processing and analysis of dynamic parameters, taking into account quality changes, which have recently occurred in the measurement technique. The model studies were carried out on a series of geometrically similar models of the protective containments fabricated under special technology of gypsum (1:100 scale) and plexiglas (1:200 scale). The models were mounted on a specially designed shaker. Harmonic oscillations with continuous frequency scanning were set up to the testers and resonant vibration frequency was recorded. Then the shell vibration mode was defined at these frequencies using small-sized mobile vibrometer. The frequencies of natural oscillations were recounted for correlation on similarity conditions.2. The study (investigation) of the dynamic characteristics of the protective containment on the base of mathematical model. The model is built in ANSYS calculation software complex and is structurally similar to the physical model, but without built elements and elastic foundation (i.e, the adopted conditions are similar to the physical model). The problem is solved in three-dimensional setting, all elements are made of three-dimensional elements (of solid type). The comparison of the experiment results on physical models and field studies is given in the Table.

DOI: 10.22227/1997-0935.2013.11.114-122

References
  1. Jeong S.-H., Mwafy A.M., Elnashai A.S. Probabilistic Seismic Performance Assessment of Code-compliant Multi-story RC Buildings. Engineering Structures. 2012, vol. 34, pp. 527—537.
  2. Fardis M. N. Seismic Design Assessment and Retrofitting of Concrete Buildings. 2009, pp. 25—33.
  3. Kirillov A.P., Krylov V.V., Sargsyan A.E. Vzaimodeystvie fundamentov sooruzheniy elektrostantsiy s osnovaniem pri dinamicheskikh nagruzkakh [Interaction of Power Plant Foundations with the Base under Dynamic Loads]. Moscow, Energoatomizdat Publ., 1984, 125 p.
  4. Kirillov A.P., Sargsyan A. E. Dinamika i seysmostoykost' AES s uchetom podatlivosti osnovaniya [Dynamics and Earthquake Resistanse of Nuclear Power Plants with Account for the Foundation Yielding]. Moscow, Informenergo Publ., 1988, p. 86.
  5. Chernov Yu.T. Prikladnyye metody dinamiki sooruzheniy [Applied Methods of Structural Dynamics]. Moscow, ASV Publ. 2001, p. 282.
  6. Shablinsky G., Zoubkov D., Isaikin A. Frequency Response Analysis of NPP Containment with WWER – 1000 Type Reactor. 18th International Conference on Structural Mechanics in Reactor Technology (SMIRT 18). Beijing, China, 2005, pp. 83—88.
  7. Liel A.B., Haselton C.B., Deierlein G.G., Baker J. W. Incorporating Modeling Uncertainties in the Assessment of Seismic Collapse Risk of Buildings. Structural Safety. 2009, vol. 31, no. 2, p. 134.

Download

Complex survey of the bridge over the structures of hydroelectric facility Ivankovo near Dubna(dam 21, power station 191)

Vestnik MGSU 11/2013
  • Mikhaylova Larisa Ivanovna - Moscow State University of Civil Engineering (MGSU) Leading engineer, laboratory of Inspection and Reconstruction of Buildings and Structures, Department of Testing of Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kunin Yuriy Saulovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Chair, Department of Testing of Structures; +7 (495) 287-49-14, ext. 1331, 1150., Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kotov Vyacheslav Ivanovich - Moscow State University of Civil Engineering (MGSU) Director, Laboratory of Examination and Testing of Structures at Department of Testing of Structures; +7 (495) 287-49-14, ext. 1331, 1150., Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 123-131

The article describes the results of a comprehensive survey of the bridge structure in Dubna. The survey was performed to determine the load capacity and maintainability of the bridge structures for the period prior to the repair, as well as to collect the information necessary to update the draft decision and the right strategy of major repairs. The growing needs of the city Dubna, which several times increased the operational loading of the bridge structures, and no major repairs since the construction, led to the need of restricting the traffic capacity of the only transportation artery. By the time of the survey in November 2011, contraflow over the bridge and the restricted traffic of more than 8 t was organized, which resulted in tense atmosphere in the city.The authors studied the historical data and design features of the supporting structures of the bridge. Particular attention was paid to the state of load-bearing structures of the bridge and their deformability. The strength characteristics were studied. The authors analyzed the results of calculations in order to determine the carrying capacity of the bridge structures with the test loads. It turned out that the carrying capacity of the bridge is sufficient for load accommodation. However, in accordance with the regulations, the bridge does not meet modern requirements for the travel width. It was recommended to maintain contraflow and to provide operational loads of the class H-10 (i.e. platoons with GVW of 10 t and the presence of a single vehicle in a platoon with GVW of 13 t) until the major repairs. After major repairs with restoration of bearings, waterproofing, water disposal system, replacing the bed, repair of the protective layer, it will be possible for single vehicles weighing up to 25 t to pass over the bridge.

DOI: 10.22227/1997-0935.2013.11.123-131

References
  1. Istoriya i issledovaniya [History and Investigations]. Moskva — Volga [Moscow — Volga river]. Available at: http://moskva-volga.ru. Date of access: 29.04.2013.
  2. Mitropol'skiy N.M. Metodologiya proektirovaniya mostov [The Methodology of Designing Bridges]. Moscow, 1958, 292 p.
  3. Kunin Yu.S., Kotov V.I., Mikhaylova L.I. Obsledovanie avtodorozhnogo mosta cherez plotinu ¹ 21 i Ivan'kovskuyu GES ¹191 po adresu Moskovskaya oblast', g. Dubna: nauchno-tekhnicheskoe zaklyuchenie [Complex Survey of the Road Bridge over the Dam ¹ 21 and Hydropower Unit of Ivankovo at Address Moscow Region, Dubna city: Scientific and Technological Opinions]. Moscow, 2011, p. 7.
  4. Bryus L. (Frantsiya) Treshchinoobrazovanie v zhelezobetonnykh konstruktsiyakh [Cracking in Reinforced Concrete Structures]. Materialy mezhdunarodnogo soveshchaniya po raschetu stroitel'nykh konstruktsiy [Works of International Conference on Calculating Building Structures]. Moscow, Gosstoyizdat Publ., 1961, p. 53.
  5. Fizdel' I.A. Defekty v konstruktsiyakh, sooruzheniyakh i metody ikh ustraneniya [Defects in Constructions, Structures and Methods of their Correction]. Moscow, Stroyizdat Publ., 1987, 196 p.
  6. Sakhnovskiy K.V. Zhelezobetonnye konstruktsii [Reinforced Concrete Structures]. Moscow, 1951, 839 p.
  7. Evgrafov K.G. Primenenie metoda rascheta konstruktsiy mostov po predel'nym sostoyaniyam [Application of the Method of Limit States in Bridge Design]. Materialy mezhdunarodnogo soveshchaniya po raschetu stroitel'nykh konstruktsiy [Works of the International Conference on Building Structures Calculation]. Moscow, Gosstoyizdat Publ., 1961, p. 153.
  8. Vasil'ev B.F., Bogatkin I.L., Zalesov A.S., Pan'shin L.L. Raschet zhelezobetonnykh konstruktsiy po prochnosti, deformatsiyam, obrazovaniyu i raskrytiyu treshchin [Calculation of Reinforced Concrete Structures in Respect of their Strength, Deformation and Crack Formation]. Moscow, Izdatelstvo Literatury po Stroitel'stvu Publ., 1965, 416 p.
  9. Grassniñk A., Gr?n E., Fiks V., Holzapfel V., Roter H. Preduprezhdenie defektov v stroitel'stve. Zashchita materialov i konstruktsiy [Prevention of Defects in Construction. Protection of Materials and Structures]. Moscow, Stroyizdat Publ., 1989, 216 p.
  10. Vasil'ev A.P., Balovnev V.I., Korsunskiy M.B. and others, editor Vasil'eva A.P. Remont i soderzhanie avtomobil'nykh dorog: spravochnik inzhenera-dorozhnika [Repair and Maintenance of Roads: the Handbook of Highway Engineer]. Moscow, Transport Publ., 1989, 287 p.

Download

USE OF PIEZOMETRIC TEMPERATURE MEASUREMENTS IN THE MONITORINGOF EARTHFILL DAMS

Vestnik MGSU 3/2012
  • Malakhanov Vyacheslav Vasilevich - Moscow State University of Civil Engineering (MSUCE) Candidate of Technical Sciences, Professor, Department of Hydraulic Engineering Structures, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 79 - 89

This paper demonstrates how temperature measurements of the water filtered by earthfill dams can be used to determine the soil filtration ratio and to monitor the condition of earthfill dams.
The ground water temperature change is caused by the processes of heat conductivity and convection. The analysis of heat transfer within earthfill dams demonstrates that the speed of thermal waves varies between (4-6) 10-7 m/s. Therefore, whenever the water filtration ratio is under 4 ∙10-7 m/s, propagation of thermal waves is driven by the heat conductivity. If the soil filtration ratio is below 2∙10-5 m/s, thermal waves are caused by forced convection (the filtration flow).
Temperature measurements of the water filtered by earthfill dams composed of non-cohesive soils make it possible to calculate averaged soil filtration ratios with an error under 20-40 %. This result is more precise than the one generated through the application of other natural methods (pumping out, use of indicators, etc.).
Temperature measurements of the water filtered by earthfill dams composed of cohesive soils make it possible to control their density and water penetration capacity, and to identify their thermal conductivity.
This paper demonstrates that the relocation of a thermal wave within non-cohesive soils prevents the filtration flow from remaining in a steady-state condition. As a result, complex secondary water flows are generated within the filtration flow by means of natural convection (the temperature gradient). Secondary water flows in question represent the principal cause of well-known abnormalities of depression curves of earthfill dams.

DOI: 10.22227/1997-0935.2012.3.79 - 89

References
  1. Biyanov G.F. Plotiny na vechnoy merzlote [Dams in Permafrost Conditions]. Moscow, Energia, 1983.
  2. Tsitovich N.A., Ukhova N.V., Ukhov S.B. Prognoz temperaturnoy ustoychivosti plotin iz mestnykh materialov na vechnomerzlykh osnovaniyakh [Projected Temperature Stability of Dams Made of Local Materials and Installed onto Permafrost Beddings]. Leningrad, Gosstroyizdat, 1972, 143 p.
  3. Aravin V.I., Nosova O.N. Naturnye issledovaniya fil’tratsii. Teoreticheskie osnovy [Field Observations of Filtration. Theory]. Leningrad, Energiya, 1969, 258 p.
  4. Aravin V.I., Nosova O.N. Voprosy metodiki naturnykh issledovaniy fil’tratsii. Ekspluatatsiya gidrotekhnicheskikh sooruzheniy gidroelektrostantsiy. Obmen opytom [Methodology of Field Observations of Filtration. Operation of Hydraulic Engineering Structures of Hydroelectric Power Plants. Exchange of Experience]. Moscow, Energiya, 1977, pp. 107—112.
  5. Ronzhin I.S. Sopostavlenie rezul’tatov naturnykh nablyudeniy za fil’tratsiey v gid-rosooruzheniyakh s proektnymi predpolozheniyami. Ekspluatatsiya gidrotekhnicheskikh sooruzheniy gidroelektrostantsiy. Obmen opytom [Comparison of Results of Field Observations of Filtration inside Hydraulic Structures with the Design Assumptions. Operation of Hydraulic Engineering Structures of Hydroelectric Power Plants. Exchange of Experience]. Moscow, Energiya, 1977, pp. 112—119.
  6. Bobkov K.A. Ob ispol’zovanii temperaturnykh nablyudeniy pri kontrole za fil’tratsiey v zemlyanykh plotinakh. Ekspluatatsiya gidrotekhnicheskikh sooruzheniy gidroelektrostantsiy. Obmen opytom [About the Use of Temperature Measurements as Part of Filtration Control Inside Earth Dams. Operation of Hydraulic Engineering Structures of Hydroelectric Power Plants. Exchange of Experience]. Moscow, Energiya, 1977, pp. 120—124.
  7. Lykov A.V. Teoriya teploprovodnosti [Theory of Thermal Conductivity]. Ìoscow, Vyssh. shk., 1967.
  8. SNiP 2.02.04—88. Osnovaniya i fundamenty na vechnomerzlykh gruntakh. Normy proektirovaniya [Building Norms and Regulations 2.02.04—88. Beddings and Foundations in Permafrost Soils. Norms of Design]. Moscow, Stroyizdat, 1988, p. 32.
  9. Il’in N.I.,. Chernyshev S.N, Dzektser E.S., Zil’berg V.S. Otsenka tochnosti opredeleniya vodopronitsaemosti gornykh porod [Assessment of Accuracy of Identification of Water Permeability of the Rock]. Moscow, Nauka, 1971, 150 p.
  10. Nosova O.N., Terskiy V.P. O prirode anomal’nykh osobennostey fil’tratsionnogo rezhima zemlyanykh sooruzheniy. [About Abnormalities of the Filtration Mode of Ear Dams]. News of VNIIG named after B.E. Vedeneyev, 1978, Volume 125, pp. 97—100.

Download

EXAMINATION AND TESTING OF CRANE BEAMS OF AN OVERFLOW DAM

Vestnik MGSU 7/2012
  • Kholopov Igor' Serafimovich - Samara State University of Architecture and Civil Engineering (SSUACE) Doctor of Technical Sciences, Professor, Chair, Department of Steel and Timber Structures, +7 (846) 242-50-87, Samara State University of Architecture and Civil Engineering (SSUACE), 194 Molodogvardeyskaya str., Samara, 443001, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zubkov Vladimir Aleksandrovich - Samara State University of Architecture and Civil Engineering (SSUACE) Candidate of Technical Sciences, Professor, Department of Steel and Timber Structures, +7 (846) 242-50-87, Samara State University of Architecture and Civil Engineering (SSUACE), 194 Molodogvardeyskaya str., Samara, 443001, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Khurtin Vladimir Anatol'evich - Chief Engineer, Zhigulevskaya Hydraulic Power Plant, Branch of RusHydro JSC Chief Engineer, +7 (848) 627-93-50, Chief Engineer, Zhigulevskaya Hydraulic Power Plant, Branch of RusHydro JSC, Zhigulevsk, Samara Region, 445350, Russian Federation.

Pages 114 - 118

The following conclusions were made upon completion of the testing of crane beams:
The lowest rigidity is demonstrated by welded beams exposed to temporary mobile loads; the maximal buckling caused by temporary mobile loads is equal to 12 mm, or 1/1,1790 of the span; the rigidity of crane beams of an overflow dam meets the requirements set by Section E2.1 of Construction Rules 20.13330.2011 "Loads and Actions".
In general, the authors state that the crane beams of the span structure of the overflow dam are in a serviceable operating condition, according to their opinion issued upon completion of examination and testing procedures. The recommendation is to regularly tighten screw nuts and to install high-strength bolts in the points of missing rivets. The authors also recommend applying a rust-proofing coating to all metal structures of the dam spans.

DOI: 10.22227/1997-0935.2012.7.114 - 118

References
  1. Romanov A.A. Zhigulevskaya GES. Ekspluatatsiya gidrotekhnicheskikh sooruzheniy [Zhigulevskaya Hydropower Plant. Operation of Hydraulic Structures]. Samara, 2010, 360 p.
  2. Federal’nyy zakon ot 21.07.1997 g. ¹ 117-FZ «O bezopasnosti gidrotekhnicheskikh sooruzheniy» [Federal Law of 21.07.1997 no. 117-FZ “About the Safety of Hydraulic Structures”].
  3. STO 17330282.27.140.016—2008. Zdaniya GES i GAES. Organizatsiya ekspluatatsii i tekhnicheskogo obsluzhivaniya. Normy i trebovaniya. [Building Requirements 17330282.27.140.016—2008. Buildings of Hydraulic Power Plants and Hydraulic Nuclear Power Plants. Organization of Their Operation and Technical Maintenance. Norms and Requirements].
  4. 22-01.97 Trebovaniya k provedeniyu otsenki bezopasnosti ekspluatatsii proizvodstvennykh zdaniy i sooruzheniy podnadzornykh promyshlennykh proizvodstv i ob”ektov (obsledovaniya stroitel’nykh konstruktsiy spetsializirovannymi organizatsiyami). 22-01.97. Requirements Applicable to Assessment of Safety of Operation of Industrial Buildings and Structures of Industrial Enterprises and Facilities under Supervision (Examination of Structures by Specialized Organizations).
  5. SP 13-102—2003. Pravila obsledovaniya nesushchikh stroitel’nykh konstruktsiy zdaniy i sooruzheniy. [Building Rules 13-102—2003. Examination of Bearing Elements of Buildings and Structures].
  6. Zubkov V.A. Problemy ekspluatatsii stroitel’nykh konstruktsiy energeticheskikh sooruzheniy [Problems of Operation of Structural Units of Power Generating Structures]. Stroyinfo: Informatsionniyy byulleten’ [Building Information: Information Bulletin]. 2004, no. 12, pp. 20—23.
  7. Zubkov V.A., Kondrat’eva N.V. Ispytanie zhelezobetonnykh podkranovykh konsoley mashinnogo zala Zhigulevskoy GES [Testing of Reinforced Concrete Crane Consoles of the Machine Hall of Zhigulevskaya Hydraulic Power Plant]. Aktual’nye problemy v stroitel’stve i arkhitekture [Relevant Problems of Construction and Architecture]. Samara, 2005, pp. 422—424.
  8. Zubkov V.A., Shabanin V.V. Analiz napryazhenno-deformiruemogo sostoyaniya zatvorov vodoslivnoy plotiny Zhigulevskoy GES [Analysis of the Stress-Strained State of the Gates of the Overflow Dam of Zhigulevskaya Hydraulic Power Plant]. Aktual’nye problemy v stroitel’stve i arkhitekture [Relevant Problems of Construction and Architecture]. Samara, 2008, pp. 478—479.
  9. Kholopov I.S., Solov’ev A.V. Opyt proektirovaniya stal’nykh dvuskatnykh balok s krugloy perforatsiey stenki [Practical Design of Double-Pitch Steel Beams That Have Circular Perforation of Walls]. Stroitel’nyy vestnik rossiyskoy inzhenernoy akademii. Stroitel’stvo. [Construction Bulletin of the Russian Engineering Academy. Construction]. Moscow, 2010, no. 11, pp. 238—242.
  10. Kholopov I.S., Solov’ev A.V. Optimizatsionnaya model’ dlya balok s perforirovannoy stenkoy [Optimized Model of Beams That Have Perforated Walls]. Vestnik transporta Povolzh’ya [Proceedings of the Transport System of the Volga Region]. Collected works of the 67th All-Russian Scientific and Technical Conference. 2009, no. 17, pp. 713—714.

Download

Determining craneways deformations caused by static loads

Vestnik MGSU 4/2015
  • Simonyan Vladimir Viktorovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Engineering Geodesy, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-24-92; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kuznetsov Oleg Fedorovich - Orenburg State University (OSU) Associate Professor, Department of City Cadastre, Honorable Geodetic Engineer of the RF, Orenburg State University (OSU), 13 prospekt Pobedy, Orenburg, 460018, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 90-95

The most typical types of crane substructures destruction are wear of crane rails, details of its fixation, deformation of crane beams, settlement or tilting of the columns. At technical examination of buildings and structures with crane rails their planned-high-altitude position is determined. There exist a list of methods for determining the crane rails’ planned-high-altitude position, each of them has its disadvantage, expressed in the final result - the real position of crane rails. While estimating their position from the ground, i.e. mounting transit on the ground, and indicating devices above, there is an inaccuracy on the rails, which is caused by different moments of indications fixation, both on the plan and hightwise. The authors carried out observations of the position of craneways both on the plan and heightwise for determining the reason of craneways bearing structures’ deformations and the period of their influence of railtrack state. The results of these observations are analyzed and presented. The authors present their suggestions on advancing the crane operation, which will increase its operation life.

DOI: 10.22227/1997-0935.2015.4.90-95

References
  1. Shekhovtsov G.A., Il’in B.A. Ob otsenke tochnosti opredeleniya krena vysokikh sooruzheniy [On Accuracy Evaluation of Tilting of High Structures]. Promyshlennoe stroitel’stvo [Industrial Engineering]. 1983, no. 2, pp. 27–—28. (In Russian)
  2. Shekhovtsov G.A., Kochetov F.G. Iz opyta kontrolya polozheniya rel’sov podkranovykh putey [From the Experience of Crane Rails Position Control]. Promyshlennoe stroitel’stvo [Industrial Engineering]. 1989, no. 10, pp. 18—22. (In Russian)
  3. Meixner Heinz. Geodezujne pomiaru deformacji. Prz. gorn. 1980, vol. 36, no. 11, pp. 540—544. LXII, LXIII, LXIV, LXV.
  4. Shekhovtsov G.A., Shekhovtsova R.P. Sovremennye geodezicheskie metody opredeleniya deformatsiy inzhenernykh sooruzheniy : monografiya [Modern Geodesic Methods for Estimating Deformations of Engineering Structures : Monograph]. N. Novgorod, NNGASU Publ., 2009, 156 p. (In Russian)
  5. Shekhovtsov G.A. Otsenka tochnosti polozheniya geodezicheskikh punktov [Position Accuracy Estimation of Geodetic Points]. Moscow, Nedra Publ., 1992, 255 p. (In Russian)
  6. Shekhovtsov G.A. Sovremennye metody geodezicheskogo kontrolya khodovoy chasti i putey mostovykh kranov [Contemporary Methods of Geodetic Control of the Carrier and Rails of Travelling Cranes]. N. Novgorod, NNGASU Publ., 1999, 164 p. (In Russian)
  7. Shekhovtsov G.A., Shekhovtsova R.P. Ob odnovremennom distantsionnom opredelenii geometrii kranovogo puti i traektorii dvizheniya mostovogo krana [On the Simultaneous Distant Estimation of Crane Track Geometry and Motion Path of Travelling Crane]. Mezhvuzovskiy nauchno-metodickeskiy sbornik [Interuniversity Sciemtific and Methodological Collection]. Saratov, SGTU Publ., 2007, pp. 202—206. (In Russian)
  8. RD 10-138—97. Kompleksnoe obsledovanie kranovykh putey gruzopod”emnykh mashin. Chast’ 1. Obshchie polozheniya. Metodicheskie ukazaniya [Directive Document RD 10-138—97. Complex Inspection of Crane Rails of Lifting Machines. Part 1. General Provisions. Methodology Instructions]. Moscow, Gosgortekhnadzor Rossii Publ., 1997, 38 p. (In Russian)
  9. Shekhovtsov G.A., Shekhovtsova R.P., Akritskaya I.I. Varianty ispol’zovaniya lazernoy ruletki pri ekspertize zdaniy i sooruzheniy [Laser Tape Measure Application Variants at Investigating Buildings and Structures]. Promyshlennaya bezopasnost’ — 2007 : sbornik statey [Industrial Safety — 2007. Collection of Articles]. N. Novgorod, NNGASU Publ., 2007, pp. 52—58. (In Russian)
  10. Monich V.Yu. Metod sputnikovoy geodezii dlya opredeleniya razmera kolei napravlyayushchikh kranovogo puti [Satellite Geodesy Method for Determining the Track Size of the Crane Track Direction]. Bezopasnost’ truda v promyshlennosti [Safety of Work in the Industry]. 2001, no. 1, pp. 46—48. (In Russian)
  11. Fedorov A.I. Metodika i predraschet tochnosti izmereniy pri profilirovanii podkranovykh rel’sovykh putey stantsiey «Profil’ PRP» [Methods and Presettlement of Estimation Accuracy at Profiling Crane Railways by the Station “Profil’ PRP“]. Marksheyderiya i nedropol’zovanie [Mining Geodesy and Subsurface Management]. 2003, no. 4, pp. 57—58. (In Russian)
  12. Shekhovtsov G.A., Kochetov F.G. Iz opyta kontrolya polozheniya rel’sov podkranovykh putey [From the Experience of Crane Rail Position Control]. Promyshlennoe stroitel’stvo [Industrial Engineering]. 1989, no. 10, pp. 18—22. (In Russian)
  13. Arnold R. Eine neue Technologie fur Kranbahn-kontrollmessungen. Vermessungstechnik. 1989, vol. 37, no. 2, pp. 52—55.
  14. Janusz W. Wyznaczanie trajektorii ruhu suwnicy i odchytek toru podsuwnicowego ze stanowisk naziemnych. Pr. Jnst. Geod. i kartogr. 1994, vol. 41, no. 89, pp. 31—45.
  15. Shekhovtsov G.A., Shekhovtsova R.P. Peredacha otmetok s ispol’zovaniem lazernoy ruletki [Marks Delivery Using Laser Tape Measure]. Promyshlennaya bezopasnost’ — 2007 : sbornik statey [Industrial Safety — 2007. Collection of Articles]. N. Novgorod, NNGASU Publ., 2007, pp. 59—63. (In Russian)
  16. Soustin V.N. Peredacha otmetok bezotrazhatel’nym dal’nomerom i nivelirom [Marks Delivery by Reflectorless Distance Meter and Level]. Geodeziya i kartografiya [Geodesy and Mapping]. 2001, no. 5, pp. 15—18. (In Russian)
  17. Bryś Henryk. Meßverfahren zum Bestimmen der Geometrie der Verformung von Brückenkran und Kranbahnschienen. Allg. Vermess.-Nachr. 2000, vol. 107, no. 11—12, pp. 391—396.
  18. Schaefer W. Photogrammetrische Beobachtung von Bauwerksverform ungen. Markscheidewesen. 1985, vol. 92, no. 4, pp. 148—151.
  19. Schwarz Wilfried. Moderne Messverfahren in der Ingenieurgeodäsie und ihr praktischer Einsatz. Flachenmanag. Und Bodenordn. 2002, vol. 64, no. 2, pp. 87—97.
  20. Kuznetsov O.F. Geodezicheskoe obespechenie stroitel’stva i ekspluatatsii sooruzheniy [Geodetic Support of the Construction and Operation of Structures]. Orenburg, Ekspress-pechat’ Publ., 2008, 201 p. (In Russian)

Download

Defects of multi-layer brick masonry exterior walls

Vestnik MGSU 10/2014
  • Malakhova Anna Nikolaevna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Architectural and Construction Design of Reinforced Concrete and Masonry Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 583-47-53; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 87-94

The article discusses possible defects of exterior walls of buildings that can occur in a multilayer brick masonry. The article is based on the inspection materials of the school building located in Bronnitsy, Moscow Region. The reasons of brick masonry defects are considered and analyzed. An external wall strength calculation of the stairwell of the building is given, confirming the reasons for the formation of defects in the masonry. The static calculation results of the exterior wall of the building stairwell revealed the presence of tensile forces in the zone of window sill of the lower window opening of the exterior wall of the building. The calculations of masonry tensile showed that load bearing capacity of the masonry in window sill zone is not provided. Thus, the calculation is justified for cracks in the window sill area of the calculated wall. The appearance of hairline cracks on the outer face of a decorative protective layer multi-layer masonry is due to the thermal deformations, the manifestation of which is enhanced by the presence of the layer of effective insulation located behind the layer of masonry and embarrassing action of rigid ties on the development of thermal deformations.

DOI: 10.22227/1997-0935.2014.10.87-94

References
  1. Glikin S.M. Sovremennye ograzhdayushchie konstruktsii i energoeffektivnost' zdaniy [Modern Enclosing Structures and Energy Efficiency Iin Buildings]. Moscow, OAO «TsNIIPromzdaniy» Publ., 2003, pp. 58—59. (in Russian)
  2. Vivanocos J.-L. Soto J., Perez I., Ros-Lis J.V., Martínez-Máñez R. A New Model Based on Experimental Results for the Thermal Characterization of Bricks. Building and Environment. 2009, vol. 44, no. 5, pp. 1047—1052. DOI: http://dx.doi.org/10.1016/j.buildenv.2008.07.016.
  3. Ciampi M., Fantozzi F., Leccese F., Tuoni G. On the Optimization of Building Envelope Thermal Performance. Civil Engineering and Environmental Systems. 2003, vol. 20, no. 4, pp. 231—254. DOI: http://dx.doi.org/10.1080/1028660031000140224.
  4. Zedan M.F., Mujahid A.M. An Efficient Solution for Heat Transfer in Composite Walls with Periodic Ambient Temperature and Solar Radiation. International Journal of Applied Energy. 1993, vol. 14, no. 2, pp. 83—98.
  5. Garevski M. Fixed and Base Isolation Retrofitting of Historic Masonry Buildings. Int. J. of Materials and Structural Integrity. 2011, vol. 5, no. 2/3, pp. 118—135. DOI: http://dx.doi.org/10.1504/IJMSI.2011.041930.
  6. Malakhova A.N. Konstruktivnye resheniya naruzhnykh sten kirpichnykh zdaniy [Constructive Solutions of the Exterior Walls of Brick Buildings]. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century. 2009, no. 1, pp. 22—23. (in Russian)
  7. Krasil'nikov P.A. et al, editors. Kamennye steny [Masonry Walls]. Konstruktivnye detali zhilykh i grazhdanskikh zdaniy [Structural Members of Residential and Civil Buildings]. Moscow, Gosudarstvennoe arkhitekturnoe izdatel'stvo Publ., 1949, pp. 14—15. (in Russian)
  8. Posobie po proektirovaniyu kamennykh i armokamennykh konstruktsiy (k SNiP II-22-81 «Kamennye i armokamennye konstruktsii. Normy proektirovaniya») [Manual of Engineering Masonry and Reinforced Masonry Structures (to SNIP II-22-81) “Masonry and Reinforced Masonry Structures. Design Standards]. V.A. Kucherenko CSRIBS, State Committee for Construction of the USSR, Moscow, VDPP Gosstroya SSSR Publ., 1989, pp. 55—56. (in Russian)
  9. MTSK — 6.2. Effektivnaya kirpichnaya kladka / Chast' VI. Tekhnicheskie resheniya, normali [An Effective B rick Masonry. Part 4. Technical Solutions. Standards]. Moskovskiy territorial'nyy stroitel'nyy katalog [Moscow Territorial Construction Catalogue]. Moscow, 1999, pp. 45. (in Russian)
  10. Umnyakova N.P. Dolgovechnost’ trekhsloynykh sten s oblitsovkoy iz kirpicha s vysokim urovnem teplovoy zashchity [Durability of Three-layered Walls with Brick Facing that Provides High Thermal Protection]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 1, pp. 94—100. (in Russian)
  11. El'chishcheva T.E., El'chishcheva M.M. Vliyanie rezhima zamorozkov na dolgovechnost' naruzhnykh ograzhdayushchikh konstruktsiy v Tsentral'no-Chernozemnom regione [The Influence of Frost on the Durability of External Walls in Central Black Earth Region]. Zhilishchnoe stroitel'stvo [Housing construction]. 2012, no. 6, pp. 32—34. (in Russian)
  12. Calderoni B., Cordasco E.A., Lenza P., Gaetana P. A Simplified Theoretical Model for the Evaluation of Structural Behaviour of Masonry Spandrels. J. of Materials and Structural Integrity. 2011, vol. 5, no. 2/3, pp. 192—214. DOI: http://dx.doi.org/10.1504/IJMSI.2011.041934.
  13. Stupishin L.Yu., Masalov A.V. Metody i problemy teplotekhnicheskikh ispytaniy mnogosloynykh kladok [Methods and Problems of Thermal Testings of Multilayer Masonry]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2014, no. 2, pp. 41—43. (in Russian)
  14. Bashir M. Suleiman. Thermal Load Calculations of Multilayered Walls. World Academy of Science. Engineering and Technology. 2012, vol. 6, no. 4, pp. 627—631.
  15. Yumrutas R, Unsa M., Kanog M. Periodic Solution of Transient Heat Flow Throw through Multilayer Walls and Flat Roofs by Complex Finite Fourier Transform Technique. Building and Environment. 2005, vol. 40, no. 3, pp. 1117—1126.
  16. Glikin S.M. Naruzhnye steny i steny podvalov s teploizolyatsiey iz penostekla marki «Neoparm» [Exterior Walls and Basement Walls Insulated with Foam Glass Mark "Neoparm"]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2014, no. 7, pp. 35—38. (in Russian)
  17. Livshits D.V., Ponomarev O.I., Lomova L.M. Povyshenie dolgovechnosti i sovershenstvovanie konstruktsiy naruzhnykh kirpichnykh i kamennykh sten energoeffektivnykh zdaniy [Increasing Durability and Improving the Structures of Outer Brick and Stone Walls of Energy Efficient Buildings]. Seysmicheskoe stroitel'stvo. Bezopasnost' sooruzheniy [Seismic Construction. Safety of Buildings]. 2008, no. 6, pp. 42—44. (in Russian)
  18. Malakhova A.N., Balakshin A.S. Defekty naruzhnykh kirpichnykh sten zdaniy, dostraivaemykh posle dlitel'nogo pereryva [Defects of Brick Exterior Walls, Completed after a Long Break]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 8, pp. 140—145. (in Russian)
  19. Krygina A.M., Mal'tsov P.V., Kartamyshev N.V., Il'inov A.G. O dolgovechnosti kamennoy kladki [On the Durability of Brickwork]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 3, pp. 185—188. (in Russian)
  20. Rekomendatsii po opredeleniyu tekhnicheskogo sostoyaniya ograzhdayushchikh konstruktsiy pri rekonstruktsii promyshlennykh zdaniy [Recommendations on the Technical Condition of Enclosing Constructions during Reconstruction of Industrial Buildings]. Moscow, Stroyizdat Publ., 1988, pp. 33—83. (in Russian)
  21. Rekomendatsii po usileniyu kamennykh konstruktsiy zdaniy i sooruzheniy [Recommendations for Strengthening of Masonry Structures and Buildings]. Moscow, TsNIISK im. V.A. Kucherenko Publ., 1984, pp. 7—8. (in Russian)
  22. Gorodetskiy A.S., Evzerov I.D. Komp'yuternye modeli konstruktsi [Computer Models of Structures]. Moscow, ASV Publ., 2009, 360 p. (in Russian)

Download

FIELD TESTING OF DYNAMIC CHARACTERISTICS OF THE BUILDING OF A UNIVERSAL POOL UNDER CONSTRUCTION IN ANAPA

Vestnik MGSU 5/2012
  • Rumyantsev Anton Andreevich - Moscow State University of Civil Engineering (MSUCE) junior researcher, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sergeevtsev Evgeniy Yur'evich - Moscow State University of Civil Engineering (MSUCE) postgraduate student, Moscow State University of Civil Engineering (MSUCE), Mytishchi Branch, 50 Olimpiyskiy prospect, Moscow Region, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 93 - 97

The authors describe the methodology and results of dynamic field testing of the building of a universal pool under construction, as well as its eigenfrequencies, identified through the employment of a computer model.
The subject of the research represents the building of a universal pool under construction in Anapa. The general goal of this research is to identify the seismic stability of the building structure. An unbalance-type vibration machine was used in the course of the testing procedure. The machine was designed and manufactured at Moscow State University of Civil Engineering.
Identification of natural vibrations of building structures and verification of the identity of the computer model and the natural behaviour of the structure were to be completed to assess the required modes of operation of the vibration machine. Identification of full-scale dynamic characteristics was performed through the employment of the impulse method of vibration excitation.
Comparative analysis of experimental vibration frequencies and eigenfrequencies identified in the course of calculations based on different mathematical models demonstrates their similarity in terms of local shapes of vibrations, namely, in terms of buckling vibrations of an "annular" beam employed for the purpose of measurements taken in the course of the testing procedure. Frequency values identified in the course of testing and calculations vary from 4.5 to 19.8 Hz.
Calibration of the vibration machine represents another objective of the experiment. The experiment has demonstrated that the whole operating range of frequencies (2 to 15Hz) is to be employed in the course of testing procedures described above.

DOI: 10.22227/1997-0935.2012.5.93 - 97

References
  1. Shablinskiy G.E., Isaykin A.S. Retrospektivnaya otsenka osobo otvetstvennykh sooruzheniy na osnove naturnykh dinamicheskikh issledovaniy [Retrospective Assessment of Structures of Major Importance on the basis of Dynamic Field Tests]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Construction], 1997, no. 8.
  2. Shablinskiy G.E., Zubkov D.A., Naturnye dinamicheskie issledovaniya stroitel'nykh konstruktsiy [Full-scale Dynamic Testing of Structures]. Moscow, ASV Publ., 2009.

Download

VIBRATION TESTING OF A SIXTEEN-STORIED BUILDING THAT HAS A PRECAST CONCRETE BOX STRUCTURE

Vestnik MGSU 5/2012
  • Rumyantsev Anton Andreevich - Moscow State University of Civil Engineering (MSUCE) junior researcher, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sergeevtsev Evgeniy Yur'evich - Moscow State University of Civil Engineering (MSUCE) postgraduate student, Moscow State University of Civil Engineering (MSUCE), Mytishchi Branch, 50 Olimpiyskiy prospect, Moscow Region, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 98 - 103

This article covers the problems of theoretical assessment of the seismic stability of a 16-storied building made of precast concrete box units by full-scale experimental testing through the employment of a powerful unbalance-type vibration machine. The authors provide the results of the experimental testing and scale them to assess the effects of an earthquake.
The testing procedure that consists in the assessment of the seismic stability of buildings through employment of the vibration testing performed by a powerful vibration machine installed on the soil surface, have proven its high efficiency.
As a result of the vibration testing, specific values of accelerations and shifts in terms of the building height and length were identified in lateral and longitudinal directions.
The results of extrapolation of the seismic effect of the vibration testing onto the 9-grade seismic load scale have proven that the buildings of this type can be considered seismically stable.

DOI: 10.22227/1997-0935.2012.5.98 - 103

References
  1. Shablinskiy G.E., Isaykin A.S., Zubkov D.A., Starchevskiy A.V. Eksperimental'nye issledovaniya dinamicheskikh kharakteristik stroitel'nykh konstruktsiy AJeS v naturnyh usloviyakh [Experimental Research of Dynamical Characteristics of Structures of Nuclear Stations]. Seysmostoykoe stroitel'stvo. Bezopasnost' sooruzheniy [Seismic Construction. Safety of Structures], 2005, no.6.
  2. Shablinskiy G.E., Isaykin A.S., Zubkov D.A., Starchevskiy A.V. Naturnye issledovaniya sobstvennykh kolebaniy spetsial'nykh sooruzheniy, vozvedennykh v seysmicheski aktivnykh rayonakh [Field Research of Natural Vibrations of Special-purpose Structures Built in Areas of Seismic Activity]. Collected works, 7th Russian Conference dedicated to Seismic Construction and Seismic Zoning. Sochi, 27.08 — 03.09.2007.
  3. Shablinskiy G.E., Isaykin A.S. Retrospektivnaya otsenka osobo otvetstvennykh sooruzheniy na osnove naturnykh dinamicheskikh issledovaniy [Retrospective Assessment of Structures of Major Importance on the basis of Dynamic Field Tests]. Promyshlennoe i grazhdanskoe stroitel'stvo [Civil and Industrial Construction], 1997, no. 8.

Download

EVALUATION OF MEASUREMENTS OF THE DISTANCE TO THE OBJECT IN THE STUDY OF ITS GRAPHIC IMAGE

Vestnik MGSU 10/2015
  • Loktev Aleksey Alekseevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Physical and Mathematical Sciences, Professor, Department of Theoretical Mechanics and Aerodynamics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Loktev Daniil Alekseevich - Bauman Moscow State Technical University (BMSTU) postgraduate student, Department of Information Systems and Telecommunications, Bauman Moscow State Technical University (BMSTU), 5 2-ya Baumanskaya str., Moscow, 105005, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 54-65

An important element of modern automated systems of management, monitoring and control of remote access modules is information about the state and behavior of a static or moving object. In many existing and planned monitoring systems processing graphical image of the object is used, which is obtained by the photo detectors and, thus, the possibility of determining geometric and kinematic parameters of a moving object is significantly reduced due to various aspects of image acquisition, one of such aspects is blur. In the present work, algorithms of the primary information processing obtained on the basis of the graphic image study of a movable or stationary object are improved using the methods and procedures of statistical analysis that allow approximating theoretical results to experimental results. The use of statistical analysis and probabilistic approach increase the accuracy of the determined characteristics, applicability of calculation procedures of the state parameters (size, shape, distance from the observer) and behavior of the object (speed and direction) and reduce the computational complexity of the final algorithm. The Bayesian estimation was obtained based on the use of quadratic, rectangular and simple loss function under normal, Laplace, uniform and lognormal distribution of errors, which allow drawing conclusions about the intervals of various models and algorithms to determine the parameters of different objects. When using the statistical approach it is taken into account that the errors are random in nature and may be considered a variety of probability density functions (normal, lognormal, Laplace and uniform distributions to minimize risks under different loss functions (quadratic, rectangular, linear), and then evaluated using the method of least squares, method of least modules and the Bayesian approach. When performing the evaluation the properties of unbiased, consistency and efficiency are important. Sustainable procedure should have the following properties: for the selected model, the procedure should be close to optimum efficiency; the results should be close to nominal, calculated for the adopted model; the effect of large errors must be eliminated. We use the minimax method of Huber, which assumes that the best estimate will not be worse than in the case of the “least favorable” density distribution. Decision rule is based on the definition of such density that minimizes the information of Fischer that is the variance function of the contribution of the sample. In the present study we offer the procedure of finding a theoretical function based on the assumption that the errors are subjected to the known laws of distribution: normal (Gaussian), Laplacian, uniform, lognormal. This is a significant advantage of the proposed methodology compared to the one used in the previous works of the authors, it is proposed here to use the Bayesian estimation of the measurements as unknown theoretical function that needs to be obtained closer to the observational measurements.

DOI: 10.22227/1997-0935.2015.10.54-65

References
  1. Sun Z., Bebis G., Miller R. On-road Vehicle Detection Using Optical Sensors: A Review. Proceeding of the IEEE International Conference on Intelligent Transportation Systems. 2004, vol. 6, pp. 125—137.
  2. Nayar S.K., Nakagawa Y. Shape from Focus: An Effective Approach for Rough Surfaces. Proceeding CRA90. 1990, vol. 2, pp. 218—225. DOI: http://dx.doi.org/10.1109/ROBOT.1990.125976.
  3. Rabe C., Volmer C., Franke U. Kalman Filter Based Detection of Obstacles and Lane Boundary. Autonome Mobile Systeme. 2005, vol. 19, pp. 51—57. DOI: http://dx.doi.org/10.1007/3-540-30292-1_7.
  4. Loktev D.A., Loktev A.A. Determination of Object Location by Analyzing the Image Blur. Contemporary Engineering Sciences. 2015, vol. 8, no. 11, pp. 467—475. DOI: http://dx.doi.org/10.12988/ces.2015.52198.
  5. Rajagopalan A.N., Chaudhuri S. An MRF Model-Based Approach to Simultaneous Recovery of Depth and Restoration from Defocused Images. Transactions on Pattern Analysis and Machine Intelligence. 1999, vol. 21, no. 7, pp. 577—589. DOI: http://dx.doi.org/10.1109/34.777369.
  6. Gaspar T., Oliveira P. New Dynamic Estimation of Depth from Focus in Active Vision Systems. Preprints of the 18th IFAC World Congress Milano (Italy) August 28 — September 2. 2011, pp. 484—491. DOI: http://dx.doi.org/10.5220/0003356904840491.
  7. Lelegard L., Vallet B., Bredif M. Multiscale Haar Transform for Blur Estimation from a Set of Images. International Archives of Photogrammetry : Remote Sensing and Spatial Information Science. Munich, Germany, October 5—7, 2011, pp. 65—70.
  8. Lin H.-Y., Chang C.-H. Depth from Motion and Defocus Blur. Optical Engineering. December 2006, vol. 45 (12), no. 127201, pp. 1—12. DOI: http://dx.doi.org/10.1117/1.2403851.
  9. Levin A., Fergus R., Durand Fr., Freeman W.T. Image and Depth from a Conventional Camera with a Coded Aperture. ACM Transactions on Graphics. 2007, vol. 26, no. 3, article 70, pp. 124—132.
  10. Loktev A.A., Loktev D.A. Metod opredeleniya rasstoyaniya do ob”ekta putem analiza razmytiya ego izobrazheniya [Method of Determining the Distance to the Object by Analyzing its Image Blur]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 6, pp. 140—151. (In Russian)
  11. Sizikov V.S., Rimskikh M.V., Mirdzhamolov R.K. Reconstructing Blurred Noisy Images Without Using Boundary Conditions. Journal of Optical Technology. 2009, vol. 76, no. 5, pp. 279—285. DOI: http://dx.doi.org/10.1364/JOT.76.000279.
  12. Elder J.H., Zucker S.W. Local Scale Control for Edge Detection and Blur Estimation. IEEE Transaction on Pattern Analysis and Machine Intelligence. 1998, vol. 20, no. 7, pp. 699—716. DOI: http://dx.doi.org/10.1109/34.689301.
  13. Alfimtsev A.N., Loktev D.A., Loktev A.A. Razrabotka pol’zovatel’skogo interfeysa kompleksnoy sistemy videomonitoringa [Development of a User Interface for an Integrated System of Video Monitoring]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 11, pp. 242—252. (In Russian)
  14. Alfimtsev A.N., Loktev D.A., Loktev A.A. Sravnenie metodologiy razrabotki sistem intellektual’nogo vzaimodeystviya [Comparison of Development Methodologies for Systems of Intellectual Interaction]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 5, pp. 200—208. (In Russian)
  15. Jiwani M.A., Dandare S.N. Single Image Fog Removal Using Depth Estimation Based on Blur Estimation. International Journal of Scientific and Research Publications. 2013, vol. 3, no. 6, pp. 1—6.
  16. Loktev A.A., Alfimtsev A.N., Loktev D.A. Algoritm raspoznavaniya ob”ektov [Algorithm of Object Recognition]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 5, pp. 194—201. (In Russian)
  17. Robinson Ph., Roodt Yu., Nel A. Gaussian Blur Identification Using Scale-Space Theory. Faculty of Engineering and Built Environment. University of Johannesburg, South Africa, 2007, pp. 68—73.
  18. Langley P. User Modeling in Adaptive Interfaces. Proc. of the Seventh Intern. Conf. on User Modeling. 1997, pp. 357—370.
  19. Trifonov A.P., Korchagin Yu.E., Trifonov M.V., Chernoyarov O.V., Artemenko A.A. Amplitude Estimate of the Radio Signal with Unknown Duration and Initial Phase. Applied Mathematical Sciences. 2014, vol. 8, no. 111, pp. 5517—5528. DOI: http://dx.doi.org/10.12988/ ams.2014.47588.
  20. Chernoyarov O.V., Sai Si Thu Min, Salnikova A.V., Shakhtarin B.I., Artemenko A.A.Application of the Local Markov Approximation Method for the Analysis of Information Processes Processing Algorithms with Unknown Discontinuous Parameters. Applied Mathematical Sciences. 2014, vol. 8, no. 90, pp. 4469—4496. DOI: http://dx.doi.org/10.12988/ ams.2014.46415.

Download

Experience of using automated monitoring systems of the strain state of bearing structures on the olympic objects sochi-2014

Vestnik MGSU 12/2015
  • Shakhraman’yan Andrey Mikhaylovich - Research and Production Association of Modern Diagnostic Systems (NPO SODIS) candidate of technical sciences, Director General, Research and Production Association of Modern Diagnostic Systems (NPO SODIS), innovative center «Skolkovo», 4-2 Lugovaya str., 143026, Moscow, Russian Federation.
  • Kolotovichev Yuriy Aleksandrovich - Research and Production Association of Modern Diagnostic Systems (NPO SODIS) candidate of technical sciences, Deputy chief designer, Research and Production Association of Modern Diagnostic Systems (NPO SODIS), innovative center «Skolkovo», 4-2 Lugovaya str., 143026, Moscow, Russian Federation.

Pages 92-105

Various defects, which occur because of the influence of different environmental factors become the reason for the emergencies of building structures. Monitoring of certain parameters of bearing structures in the process of their erection and beginning of operation will help detecting negative processes which may endanger mechanical safety of buildings. The authors offer the operating results of automated monitoring system of the bearing structures state of the ice arena “Shayba” in the Olympic park in Sochi during the earthquake which happened on December 23th, 2012. The arena was equipped with a dynamic monitoring system, which helped estimating the influence of a seismic occurrence on the building constructions, to make prompt conclusions on absence of damages of the bearing structures, get important data on the dynamic response of the structure.

DOI: 10.22227/1997-0935.2015.12.92-105

References
  1. Senderov B.V. Avarii zhilykh zdaniy [Emergencies of Residential Buildings]. Moscow, Stroyizdat Publ., 1992, 216 p. (In Russian)
  2. Eremin K.I., Makhutov N.A., Pavlova G.A., Shishkina N.A. Reestr avariy zdaniy i sooruzheniy 2001—2010 godov [Register of the Emergencies of Buildings and Structures in 2001—2010]. Moscow, 2011, 320 p. (In Russian)
  3. Senderov B.V., Barkov Yu.V., Zakharov V.A. Analiz povrezhdeniy krupnopanel’nykh zdaniy [Analysis of Damages of Large Panel Buildings]. Sbornik nauchnykh trudov [Collection of Scientific Works]. Moscow, 1986, 230 p. (In Russian)
  4. Senderov B.V., Dronov Yu.P. Naturnye issledovaniya prochnosti krupnopanel’nykh zdaniy [Field surveys of the stability of large panel buildings]. Bukharest, Rumania, INCHERK Publ., 1986. (In Russian)
  5. Shakhraman’yan A.M. Metodicheskie osnovy sozdaniya system monitoringa nesushchikh construktsiy unikal’nykh ob’’ektov [Methodological principles of the development of monitoring systems of load-bearing structures in unique buildings]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 1, pp. 256—262. (In Russian)
  6. Shakhramanyan A., Kukartz J., Kolotovichev Y.A. Modern Structural Monitoring Systems for High-Rise and Unique Buildings. 2nd Joint International Symposium on Deformation Monitoring (JISDM). Nottingham, UK, 2013.
  7. Sluzhba srochnykh doneseniy [Emergency Message Service]. Geofizicheskaya sluzhba RAN [Geophysical Service of the Russian Academy of Sciences]. Available at: http://www.ceme.gsras.ru/ceme/. Date of access: 15.10.2015. (In Russian)
  8. Mkrtychev O.V., Dzhinchvelashvili G.A. Problemy ucheta nelineynostey v teorii seysmostoykosti (gipotezy i zabluzhdeniya) [Problems of Accounting for Nonlinearities in the Theory of Seismic Resistance (Hypotheses and Mistakes)]. 2nd edition. Moscow, MGSU Publ., 2014, pp. 88—89. (In Russian)
  9. Batel M. Operational Modal Analysis — Another Way of Doing Modal Testing. Sound and Vibration. August 2002, pp. 22—27.
  10. Siebel T., Friedman A., Koch M., Mayer D. Assessment of Mode Shape-Based Damage Detection Methods under Real Operational Conditions. 6th European Workshop on Structural Health Monitoring. Dresden, Germany, 2012.
  11. Sohn H., Farrar C.R., Hemez F.M., Shunk D.D., Stinemates D.W., Nadler B.R., Czamecki J.J. A Review of Structural Health Monitoring Literature: 1996—2001. Los Alamos, NM, USA, Los-Alamos National Laboratory, Report LA-13976-MS, 2004.
  12. Rainieri C., Fabbrocino G. Operational Modal Analysis of Civil Engineering Structures. 1st edition. New York, Springer-Verlag Publ., 2014, 322 p. DOI: http://dx.doi.org/10.1007/978-1-4939-0767-0.
  13. Patrikeev A.V. Sistema dinamicheskogo monitoringa inzhenernogo sooruzheniya kak klyuchevoy element ego tekhnicheskoy bezopasnosti [Dynamic Monitoring of Engineering Structures as a Key Element of its Technical Security]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 3, pp. 133—140. (In Russian)
  14. Zavalishin S.I., Shablinskiy G.E., Zubkov D.A., Rumyantsev A.A. Dinamicheskiy monitoring zdaniy i sooruzheniy dlya kontrolya ikh seysmostoykosti [Dynamic Monitoring of Buildings and Structures to Control their Seismic Resistance]. Predotvrashchenie avariy zdaniy i sooruzheniy [Preventing Emergencies of Buildings and Structures]. September 2009. Available at: http://pamag.ru/src/pressa/126.pdf. (In Russian)
  15. Belostotskiy A.M., Kalichava D.K., Nagibovich A.I., Petryashev N.O., Petryashev S.O. Adaptiruemye konechnoelementnye modeli v osnove dinamicheskogo monitoringa nesushchikh konstruktsiy vysotnykh zdaniy. Chast’ 2. Verifikatsiya metodiki na stendovykh modelyakh [Adaptable Finite Element Models on the Basis of Dynamic Monitoring of Bearing Structures of High-rise Buildings]. International Journal for Computational Civil and Structural Engineering. 2012, vol. 8, no. 4, pp. 28—42. (In Russian)
  16. Savin S.N., Demishin S.V., Sitnikov I.V. Monitoring unikal’nykh ob”ektov s ispol’zovaniem dinamicheskikh parametrov po GOST R 53778-2010 [Monitoring of Unique Objects Using Dynamoc Parametres According to State Standard GOST R 53778-2010]. Inzhenerno-stroitel’nyy zhurnal [Engineering and Construction Journal]. 2011, no. 7, pp. 33—39.(In Russian)
  17. Shakhraman’yan A.M. Analiz vozmozhnostey monitoring sostoyaniya vysotnykh zdaniy na osnove kontrolya sobstvennykh chastot kolebaniy [Analysis of monitoring Possibility of high-rise buildings’ state on the basis of natural frequencies control]. Russkiy inzhener [Russian Engineer]. 2013, no. 1 (36), pp. 34—35. (In Russian)
  18. Korepanov V.V., Tsvetkov R.V. Sezonnye izmeneniya sobstvennykh chastot kolebaniy zdaniy na svaynom fundamente [Seasonal Changes of Natural Vibrations of Buildings on Pile Foundation]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika [PNRPU Mechanics Bulletin]. 2014, no. 2, pp. 153—167. (In Russian)
  19. Minh-Nghi T., Lardies J., Marc B. Natural Frequencies and Modal Damping Ratios Identification of Civil Structures from Ambient Vibration Data. Shock and Vibration. 2006, no. 13, pp. 429—444. DOI: http://dx.doi.org/10.1155/2006/625927
  20. Cruciat R., Ghindea C. Experimental Determination of Dynamic Characteristics of Structures. Mathematical Modelling in Civil Engineering. 2012, no. 4, pp. 51—59.
  21. Dmitriev S.N., Khamidullin R.K. Korrektsiya matritsy dempfirovaniya s ispol’zovaniem eksperimental’nykh znacheniy koeffitsientov modal’nogo dempfirovaniya [Correction of Damping Matrix Using Experimental Values of Modal Damping Coefficients]. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovations]. 2013, no. 3 (15). Available at: http://engjournal.ru/articles/619/619.pdf. (In Russian)
  22. Shakhraman’yan A.M. Systemy monitoringa i prognoza tekhnicheskogo sostoyaniya zdaniy i sooruzheniy. Teoriya i praktika [Monitoring and forecast systems of technical state of buildings and constructions. Theory and practice]. Russkiy inzhener [Russian Engineer]. 2011, no. 1 (28), pp. 54—64. (In Russian)
  23. Kapustyan N.K., Klimov A.N., Antonovskaya G.N. Vysotnye zdaniya: opyt monitoringa i puti ego ispol’zovaniya pri proektirovanii [High-rise Buildings: Monitoring Experience and Ways of its Use in Design]. Vysotnoe stroitel’stvo [High-rise Construction]. 2013, no. 11, pp. 6—12. (In Russian)
  24. Kapustyan N.K., Tarakanovskiy V.K., Voznyuk A.B., Klimov A.N. Deystvuyushchaya sistema monitoringa vysotnogo zhilogo zdaniya v Moskve [Effective Monitoring System of a High-Rise Residential Building in Moscow]. Predotvrashchenie avariy zdaniy i sooruzheniy [Preventing Emergencies оf Buildings and Structures]. August 2010. Available at: http://pamag.ru/src/pressa/028.pdf. (In Russian)
  25. Klimov A.N. Prognoz razvitiya napryazhenno-deformirovannogo sostoyaniya konstruktsiy vysotnogo zdaniya na osnovanii dannykh sistemy monitoringa [Development Forecast of Stress-Strain State of Structures of a High-Rise Building on the Basis of Monitoring Systems]. Zhilishchnoe stroitel’stvo [Housing Constructuin]. 2013, no. 11, pp. 13—16. (In Russian)

Download

Results 1 - 20 of 25
  • «
  •  Start 
  •  Prev 
  •  1 
  •  2 
  •  Next 
  •  End 
  • »