-
Gotlib Еlena M -
Kazan National Research Technological University (KNRTU)
Doctor of Engineering, Professor, Professor of the chair of artificial rubber technology, Kazan National Research Technological University (KNRTU), 68 Karl Marx st., Kazan, 420015, Russian Federation.
-
Anh Nguyen -
Kazan National Research Technological University (KNRTU)
postgraduate student of the chair of artificial rubber technology, Kazan National Research Technological University (KNRTU), 68 Karl Marx st., Kazan, 420015, Russian Federation.
-
Sokolova Аlla G. -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, Associate Professor, Associate Professor of foreign languages and professional languages Department, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
Introduction. Application of renewable raw materials for manufacturing non-toxic components of polymer materials is of great practical interest. Cyclic carbonates on the base of epoxidated rubber tree oil could be seen as a promising alternative of fossil fuels. The ability of compounds containing cyclic carbonates to interact with primary amines and to form urethane and hydroxyl groups makes them rather efficient modifiers of amine-toughened epoxy compounds on the base of low-molecular diane oligomers. Introduction of cyclic carbonates enhances impact behavior of epoxy materials as well as their adhesion and strength properties. Materials and methods. Epoxy resin ED-20 was used for the research, as a cross-linking agent for cold toughening aminealkylphenol AF-2 was used; cyclic carbonates of epoxidated soy oils and rubber tree oil were applied as modifiers. Adhesional strength of bond joints has been determined in compliance with the GOST 28840-90, abrasive hardness of epoxy compound samples has been tested by the vertical optical caliper IZV-1. Results. When applying two-stage technology for obtaining epoxy cyclic carbonate compounds, there has been appeared a significant increase of adhesion to aluminum. This effect could be even more noticeable with increasing temperature during the stage of mixture of the amine toughener with the cyclic carbonate modifier. High viscosity of cyclic carbonate modifiers complicates the process of mixing components of the epoxy compound and correspondingly its application as a backing of glues and linings. The authors researched cyclic carbonates of epoxidated soy oil with various averaged functionality as modifiers. Application of epoxy materials CESO-75 as a modifier has proven to be more forward-thinking for the reasons of cost-efficiency and for operating and technological properties. CESO lowers the coefficient of static friction for epoxy materials together with enhancing their abrasion hardness. Conclusions. Cyclic carbonates of epoxidated plant oils (soy oil and rubber tree oil) as rather efficient non-toxic modifiers of epoxy polymers are of practical interest. They are produced on the base of annually renewable plant raw materials. Their application enables to enhance abrasion hardness and adhesion properties of epoxy compounds and also improve their antifriction properties.
DOI: 10.22227/1997-0935.2018.12.1491-1498
-
Ngo Xuan Hung -
Moscow State University of Civil Engineering (National Research University) (MGSU)
postgraduate student of Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
-
Tang Van Lam -
Moscow State University of Civil Engineering (National Research University) (MGSU)
postgraduate student of Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
-
Bulgakov Boris I. -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
-
Aleksandrova Olga V. -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
-
Larsen Oksana A. -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
Introduction. The possibility of determining the relative deformations of fine-grained concretes based on sulfate-resistant cement was formulated by testing samples of gypsum-cement-sand mixture in distilled water in accordance with the requirements of the Vietnamese standard TCVN 6068:2004. Objective - to determine the deformations of fine-grained concrete because of sulfate-resistant Portland cement in accordance with the requirements of the TCVN 6068:2004 standard to assess its resistance to corrosion in an aggressive sulfate medium. Materials and methods. To obtain a gypsum-cement-sand mixture, a finely disintegrating binder was used, consisting of sulfate-resistant Portland cement of the type CEM I CC 42.5 N produced by the “Tam Diep” plant with the addition of natural gypsum produced by the company “Dinh Vu”. Quartz sand was used as fine aggregate. All raw materials used were native to Vietnam. Grinding fineness, normal cement density, setting time, the uniformity of the volume change and the activity of sulfate-resistant Portland cement were determined according to GOST 30744-2001; deformations of samples from gypsum-cement-sand mixtures - according to the Vietnamese standard TCVN 6068:2004. Results. Investigated the relative increase in the volume of samples of gypsum-cement-sand mixture based on sulfate-resistant Portland cement and natural gypsum as a result of their testing in distilled water according to the standard TCVN 6068:2004. Conclusions. Found that the average value of the relative deformation of the prism samples of concrete as a result of a 14-day test in distilled water was 0.037 %, which is within the acceptable value of 0.04 % in accordance with the requirements of the Vietnamese standard TCVN 6067:2004. Therefore, sulfate-resistant Portland cement type CEM I CC 42.5 N produced by the “Tam Diep” plant is a promising material as a binder for the preparation of corrosion-resistant concrete. The increase in the mean values of the relative deformations of the gypsum-cement-sand prism specimens after the 28-day and 60-day of testing, compared to the results of the 14-day test, can be explained by a slightly increased content of tricalcium aluminate in the studied cement.
DOI: 10.22227/1997-0935.2018.12.1499-1508
-
Martynov Gleb V. -
Peter the Great St. Petersburg Polytechnic University (SPbPU)
undergraduate student, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Polytechnicheskaya st., St. Petersburg, 195251, Russian Federation.
-
Monastyreva Daria E. -
Peter the Great St. Petersburg Polytechnic University (SPbPU)
undergraduate student, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Polytechnicheskaya st., St. Petersburg, 195251, Russian Federation.
-
Morina Elena A. -
Peter the Great St. Petersburg Polytechnic University (SPbPU)
undergraduate student, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Polytechnicheskaya st., St. Petersburg, 195251, Russian Federation.
-
Makarov Aleksey I. -
Peter the Great St. Petersburg Polytechnic University (SPbPU)
undergraduate student, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Polytechnicheskaya st., St. Petersburg, 195251, Russian Federation.
Introduction. Were investigated samples of fiberglass with the aim of its effective use in construction in the long term. Fiberglass is considered one of the most versatile and durable materials among polymer composite materials, however, and it is subject to destruction. It is known that one of the main reasons for reducing the specified characteristics and material properties is operational. At the design stage, it is necessary to determine the most reliable and economical materials used and, accordingly, be sufficiently aware of their strength and durability. Thus, in order to avoid the destruction of the material, as well as significantly enhance and prolong its service life, it is necessary to be aware of how exactly the properties of the material change over time. Regarding reinforced concrete, wood, brick and steel fiberglass is used in construction recently. This means that while the service life of the list of the most common materials in construction is known to a sufficient extent, manufacturers do not dare to use fiberglass as a material for critical structures. This occurs because changes in its characteristics, depending on operational factors, are not sufficiently studied for intervals exceeding 4-5 years of operation. Materials and methods. During the work, samples of fiberglass SPPS with a longitudinal and transverse arrangement of fiberglass were tested for climatic aging in a climatic chamber for 5 cycles simulating 5 years of material operation. All samples were subjected to tensile testing on a tensile testing machine R-5. Results. Destructive stresses were determined, calculations were carried out and elastic and strength characteristics of the samples were analyzed. On the basis of the obtained results, an analysis was carried out, conclusions were formulated about the use of fiberglass in the construction in the long term, as well as the influence of such operational factors as moisture, positive and negative temperatures, and ultraviolet radiation on the properties of fiberglass with a different arrangement of fiberglass. Conclusions. Found that the destructive stresses of fiberglass are significantly reduced during the first two years of operation, which must be considered when choosing fiberglass with the stated characteristics. Ultraviolet does not have a significant effect on the elastic-strength properties of the material, while during operat
DOI: 10.22227/1997-0935.2018.12.1509-1523